These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1935695)

  • 21. Murine stem cell factor stimulates erythropoietic differentiation of ventral mesoderm in Xenopus gastrula embryo.
    Ong RC; Maéno M; Kung HF
    Exp Cell Res; 1993 Apr; 205(2):326-30. PubMed ID: 7683272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue.
    Maéno M; Ong RC; Xue Y; Nishimatsu S; Ueno N; Kung HF
    Dev Biol; 1994 Feb; 161(2):522-9. PubMed ID: 8313998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BMP-mediated specification of the erythroid lineage suppresses endothelial development in blood island precursors.
    Myers CT; Krieg PA
    Blood; 2013 Dec; 122(24):3929-39. PubMed ID: 24100450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of ventral blood island mesoderm to hematopoiesis in postmetamorphic and metamorphosis-inhibited Xenopus laevis.
    Rollins-Smith LA; Blair P
    Dev Biol; 1990 Nov; 142(1):178-83. PubMed ID: 2172056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adult-type splenocytes of Xenopus induce apoptosis of histocompatible larval tail cells in vitro.
    Izutsu Y; Yoshizato K; Tochinai S
    Differentiation; 1996 Sep; 60(5):277-86. PubMed ID: 8855371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in heat shock protein synthesis and hsp70 gene transcription during erythropoiesis of Xenopus laevis.
    Winning RS; Browder LW
    Dev Biol; 1988 Jul; 128(1):111-20. PubMed ID: 2454851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis.
    Hasebe T; Kajita M; Fujimoto K; Yaoita Y; Ishizuya-Oka A
    Dev Dyn; 2007 Aug; 236(8):2338-45. PubMed ID: 17654707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stem cell development involves divergent thyroid hormone receptor subtype expression and epigenetic modifications in the Xenopus metamorphosing intestine.
    Hasebe T; Fujimoto K; Buchholz DR; Ishizuya-Oka A
    Gen Comp Endocrinol; 2020 Jun; 292():113441. PubMed ID: 32084349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and evaluation of erythroid progenitors in the livers of larval, froglet, and adult Xenopus tropicalis.
    Omata K; Nomura I; Hirata A; Yonezuka Y; Muto H; Kuriki R; Jimbo K; Ogasa K; Kato T
    Biol Open; 2023 Aug; 12(8):. PubMed ID: 37421150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.
    Hasebe T; Fujimoto K; Kajita M; Fu L; Shi YB; Ishizuya-Oka A
    Stem Cells; 2017 Apr; 35(4):1028-1039. PubMed ID: 27870267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of the cDNA sequences derived from the larval and the adult alpha 1-globin mRNAs of Xenopus laevis.
    Andres AC; Hosbach HA; Weber R
    Biochim Biophys Acta; 1984 Apr; 781(3):294-301. PubMed ID: 6322851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult.
    Heimeier RA; Das B; Buchholz DR; Fiorentino M; Shi YB
    Genome Biol; 2010; 11(5):R55. PubMed ID: 20482879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thyroid hormone regulation of germ cell-specific EF-1 alpha expression during metamorphosis of Xenopus laevis.
    Abdallah B; Sachs L; Hourdry J; Wegnez M; Denis H; Demeneix B; Mazabraud A
    Int J Dev Biol; 1996 Apr; 40(2):507-14. PubMed ID: 8793622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of erythroid progenitors induced by erythropoietic activity in Xenopus laevis.
    Nogawa-Kosaka N; Sugai T; Nagasawa K; Tanizaki Y; Meguro M; Aizawa Y; Maekawa S; Adachi M; Kuroki R; Kato T
    J Exp Biol; 2011 Mar; 214(Pt 6):921-7. PubMed ID: 21346119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequential analysis of alpha- and beta-globin gene expression during erythropoietic differentiation from primate embryonic stem cells.
    Umeda K; Heike T; Nakata-Hizume M; Niwa A; Arai M; Shinoda G; Ma F; Suemori H; Luo HY; Chui DH; Torii R; Shibuya M; Nakatsuji N; Nakahata T
    Stem Cells; 2006 Dec; 24(12):2627-36. PubMed ID: 16888280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of adult and tadpole specific globin genes from Xenopus laevis in transgenic mice.
    Dillon N; Kollias G; Grosveld F; Williams JG
    Nucleic Acids Res; 1991 Nov; 19(22):6227-30. PubMed ID: 1720238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of Ventral Blood Island (VBI)-Derived Cells to Postembryonic Liver Erythropoiesis in Xenopus laevis: (erythropoiesis/larval hemoglobin/liver/anemia/Xenopus).
    Ohinata H; Enami T
    Dev Growth Differ; 1991 Aug; 33(4):299-306. PubMed ID: 37281568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis.
    Suzuki K; Machiyama F; Nishino S; Watanabe Y; Kashiwagi K; Kashiwagi A; Yoshizato K
    Dev Growth Differ; 2009 May; 51(4):411-27. PubMed ID: 19382937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Globin messenger RNA activity in erythroid precursor cells and the effect of erythropoietin.
    Terada M; Cantor L; Metafora S; Rifkind RA; Bank A; Marks PA
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3575-9. PubMed ID: 4509317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of sodium-iodide symporter mRNA in the thyroid gland of Xenopus laevis tadpoles: developmental expression, effects of antithyroidal compounds, and regulation by TSH.
    Opitz R; Trubiroha A; Lorenz C; Lutz I; Hartmann S; Blank T; Braunbeck T; Kloas W
    J Endocrinol; 2006 Jul; 190(1):157-70. PubMed ID: 16837620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.