BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19356969)

  • 1. The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall.
    Dabagh M; Jalali P; Konttinen YT
    Med Eng Phys; 2009 Sep; 31(7):816-24. PubMed ID: 19356969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the shape and configuration of smooth muscle cells on the diffusion of ATP through the arterial wall.
    Dabagh M; Jalali P; Sarkomaa P
    Med Biol Eng Comput; 2007 Nov; 45(11):1005-14. PubMed ID: 17634760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H576-84. PubMed ID: 11788405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H905-13. PubMed ID: 15016628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall.
    Tada S; Tarbell JM
    Ann Biomed Eng; 2001 Jun; 29(6):456-66. PubMed ID: 11459339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R; Stergiopulos N
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Cellular Contributions to Elastic Laminae Formation in Arterial Wall Development.
    Lin CJ; Staiculescu MC; Hawes JZ; Cocciolone AJ; Hunkins BM; Roth RA; Lin CY; Mecham RP; Wagenseil JE
    Circ Res; 2019 Nov; 125(11):1006-1018. PubMed ID: 31590613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI.
    Frydrychowicz A; Stalder AF; Russe MF; Bock J; Bauer S; Harloff A; Berger A; Langer M; Hennig J; Markl M
    J Magn Reson Imaging; 2009 Jul; 30(1):77-84. PubMed ID: 19557849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall shear stress in backward-facing step flow of a red blood cell suspension.
    Gijsen FJ; van de Vosse FN; Janssen JD
    Biorheology; 1998; 35(4-5):263-79. PubMed ID: 10474654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H2023-39. PubMed ID: 9139991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression in endothelial cells and intimal smooth muscle cells in atherosclerosis-prone or atherosclerosis-resistant regions of the human aorta.
    Wara AK; Mitsumata M; Yamane T; Kusumi Y; Yoshida Y
    J Vasc Res; 2008; 45(4):303-13. PubMed ID: 18212511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blunt trauma and acute aortic syndrome: a three-layer finite-element model of the aortic wall.
    Zhao AR; Field ML; Digges K; Richens D
    Eur J Cardiothorac Surg; 2008 Sep; 34(3):623-9. PubMed ID: 18539473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sclerotomal origin of smooth muscle cells in the wall of the avian dorsal aorta.
    Wiegreffe C; Christ B; Huang R; Scaal M
    Dev Dyn; 2007 Sep; 236(9):2578-85. PubMed ID: 17685486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of elastin along the thoracic aorta in the pig.
    Lillie MA; Gosline JM
    J Biomech; 2007; 40(10):2214-21. PubMed ID: 17174959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface.
    Li J; Zhang K; Yang P; Liao Y; Wu L; Chen J; Zhao A; Li G; Huang N
    Exp Cell Res; 2013 Oct; 319(17):2663-72. PubMed ID: 23831491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo mechanical properties of thoracic aortic aneurysmal wall estimated from in vitro biaxial tensile test.
    Fukui T; Matsumoto T; Tanaka T; Ohashi T; Kumagai K; Akimoto H; Tabayashi K; Sato M
    Biomed Mater Eng; 2005; 15(4):295-305. PubMed ID: 16010038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.