BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 193571)

  • 1. Altered regulation of cyclic AMP-dependent protein kinase in a mouse lymphoma cell line.
    Lasser M; Daniel V
    Biochim Biophys Acta; 1977 May; 482(1):41-51. PubMed ID: 193571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural gene mutation affecting the regulatory subunit of cyclic AMP-dependent protein kinase in mouse lymphoma cells.
    Hochman J; Insel PA; Bourne HR; Coffino P; Tomkins GM
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):5051-5. PubMed ID: 174091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit interaction in cyclic AMP-dependent protein kinase of mutant lymphoma cells.
    Hochman J; Bourne HR; Coffino P; Insel PA; Krasny L; Melmon KL
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):1167-71. PubMed ID: 191831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-site mutations in cyclic AMP-sensitive revertants of a Ka mutant of S49 mouse lymphoma cells reduce the affinity of regulatory subunit of cyclic AMP-dependent protein kinase for catalytic subunit.
    Cauthron RD; Gorman KB; Symcox MM; Steinberg RA
    J Cell Physiol; 1995 Nov; 165(2):376-85. PubMed ID: 7593216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells.
    Russell JL; Steinberg RA
    J Cell Physiol; 1987 Feb; 130(2):207-13. PubMed ID: 3029147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP-resistant mutants of S49 mouse lymphoma cells hemizygous for expression of regulatory subunit of type I cyclic AMP-dependent protein kinase.
    Steinberg RA; Murphy CS; Russell JL; Gorman KB
    Somat Cell Mol Genet; 1987 Nov; 13(6):645-59. PubMed ID: 2823395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turnover of regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells. Regulation by catalytic subunit and analogs of cyclic AMP.
    Steinberg RA; Agard DA
    J Biol Chem; 1981 Nov; 256(21):10731-4. PubMed ID: 6270127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of cytolysis of cultured lymphoma cells by adenosine 3':5'-cyclic monophosphate and the isolation of resistant variants.
    Daniel V; Litwack G; Tomkins GM
    Proc Natl Acad Sci U S A; 1973 Jan; 70(1):76-9. PubMed ID: 4346041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hotspots for spontaneous and mutagen-induced lesions in regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells.
    Murphy CS; Steinberg RA
    Somat Cell Mol Genet; 1985 Nov; 11(6):605-15. PubMed ID: 3000002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. M2 subunit of ribonucleotide reductase is a target of cyclic AMP-dependent protein kinase.
    Albert DA; Nodzenski E
    J Cell Physiol; 1989 Jan; 138(1):129-36. PubMed ID: 2536034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The separation, properties and possible subunit composition of adenosine 3',5'-monophosphate-dependent protein kinases in brown adipose tissue.
    Knight BL; Fordham RA
    Biochim Biophys Acta; 1975 Mar; 384(1):102-11. PubMed ID: 165829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cyclic AMP-dependent pig brain protein kinase: subunit structure, mechanism of autophosphorylation and holoenzyme dissociation under cyclic AMP action].
    Ul'masov KhA; Nesterova MV; Severin Es
    Biokhimiia; 1980 May; 45(5):835-44. PubMed ID: 6246982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the dominance of mutations in cAMP-binding sites of murine type I cAMP-dependent protein kinase in activation of kinase from heterozygous mutant lymphoma cells.
    Shuntoh H; Steinberg RA
    J Cell Physiol; 1991 Jan; 146(1):86-93. PubMed ID: 1846638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cyclic AMP on the cell cycle regulation of ribonucleotide reductase M2 subunit messenger RNA concentrations in wild-type and mutant S49 T lymphoma cells.
    Albert DA; Nodzenski E; Yim G; Kowalski J
    J Cell Physiol; 1990 May; 143(2):251-6. PubMed ID: 2159014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a cyclic AMP-resistant Chinese hamster ovary cell mutant containing both wild-type and mutant species of type I regulatory subunit of cyclic AMP-dependent protein kinase.
    Singh TJ; Hochman J; Verna R; Chapman M; Abraham I; Pastan IH; Gottesman MM
    J Biol Chem; 1985 Nov; 260(26):13927-33. PubMed ID: 2997187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The autophosphorylation reaction in the mechanism of activation of pig brain cyclic AMP-dependent protein kinase.
    Nesterova MV; Ulmasov KA; Shlyapnikov SV; Severin ES
    Biochim Biophys Acta; 1981 Jul; 660(1):110-6. PubMed ID: 6268168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two adenosine 3':5'-phosphate-dependent protein kinase species from Chinese hamster ovary cells.
    Li AP; Hsie AW
    Biochim Biophys Acta; 1978 Dec; 527(2):403-13. PubMed ID: 215211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexpression of mutant and wild type protein kinase in lymphoma cells resistant to dibutyryl cyclic AMP.
    Lemaire I; Coffino P
    J Cell Physiol; 1977 Sep; 92(3):437-45. PubMed ID: 198416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and activation of acetyl-coenzyme A Carboxylase kinase by the catalytic subunit of cyclic AMP-dependent protein kinase.
    Lent BA; Kim KH
    Arch Biochem Biophys; 1983 Sep; 225(2):972-8. PubMed ID: 6312899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP-dependent protein kinase I: cyclic nucleotide binding, structural changes, and release of the catalytic subunits.
    Smith SB; White HD; Siegel JB; Krebs EG
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1591-5. PubMed ID: 6262817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.