These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 19357178)

  • 1. Electrohydraulic pump-driven closed-loop blood pressure-regulatory system.
    Siu KL; Ahn JM; Chon KH
    Am J Physiol Renal Physiol; 2009 Jun; 296(6):F1530-6. PubMed ID: 19357178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-loop control of renal perfusion pressure in physiological experiments.
    Campos-Delgado DU; Bonilla I; Rodríguez-Martínez M; Sánchez-Briones ME; Ruiz-Hernández E
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1776-84. PubMed ID: 23358945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the renal nerves and angiotensin II in the renal function curve.
    Golin R; Genovesi S; Castoldi G; Wijnmaalen P; Protasoni G; Zanchetti A; Stella A
    Arch Ital Biol; 1999 Aug; 137(4):289-97. PubMed ID: 10443320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The renin-angiotensin system and the third mechanism of renal blood flow autoregulation.
    Seeliger E; Wronski T; Ladwig M; Dobrowolski L; Vogel T; Godes M; Persson PB; Flemming B
    Am J Physiol Renal Physiol; 2009 Jun; 296(6):F1334-45. PubMed ID: 19339631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and subspace system identification of an ex vivo vascular perfusion system.
    El-Kurdi MS; Vipperman JS; Vorp DA
    J Biomech Eng; 2009 Apr; 131(4):041012. PubMed ID: 19275441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Telemetric signal-driven servocontrol of renal perfusion pressure in acute and chronic rat experiments.
    Xia M; Li PL; Li N
    Am J Physiol Regul Integr Comp Physiol; 2008 Nov; 295(5):R1494-501. PubMed ID: 18815205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal Perfusion Pressure Determines Infiltration of Leukocytes in the Kidney of Rats With Angiotensin II-Induced Hypertension.
    Shimada S; Abais-Battad JM; Alsheikh AJ; Yang C; Stumpf M; Kurth T; Mattson DL; Cowley AW
    Hypertension; 2020 Sep; 76(3):849-858. PubMed ID: 32755400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal interstitial hydrostatic pressure and natriuretic response to high doses of angiotensin II in pregnant rats.
    Yu T; Khraibi AA
    Am J Hypertens; 2006 Mar; 19(3):300-5. PubMed ID: 16500518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure.
    Wauters J; Claus P; Brosens N; McLaughlin M; Malbrain M; Wilmer A
    J Trauma; 2009 Mar; 66(3):713-9. PubMed ID: 19276743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II exerts positive feedback on the intrarenal renin-angiotensin system by an angiotensin converting enzyme-dependent mechanism.
    Sadjadi J; Kramer GL; Yu CH; Welborn MB; Modrall JG
    J Surg Res; 2005 Dec; 129(2):272-7. PubMed ID: 15992826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Autoregulation of renal blood flow and blood pressure variability in the conscious rat].
    Pires SL; Barrès C; Sassard J; Julien C
    Arch Mal Coeur Vaiss; 2001 Aug; 94(8):818-21. PubMed ID: 11575210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of low-frequency oscillations in renal blood flow.
    Siu KL; Sung B; Cupples WA; Moore LC; Chon KH
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F155-62. PubMed ID: 19420111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat.
    Racasan S; Joles JA; Boer P; Koomans HA; Braam B
    Am J Physiol Renal Physiol; 2003 Jul; 285(1):F105-12. PubMed ID: 12631552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal autoregulation and tubuloglomerular feedback in prediabetic and diabetic OLETF rats.
    Hashimoto S; Yamada K; Kawata T; Mochizuki T; Schnermann J; Koike T
    Am J Physiol Renal Physiol; 2009 Mar; 296(3):F598-604. PubMed ID: 19106213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal autoregulation and passive pressure-flow relationships in diabetes and hypertension.
    Hill JV; Findon G; Appelhoff RJ; Endre ZH
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F837-44. PubMed ID: 20660017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of high salt diet on blood pressure, renal morphology and osteopontin expression in Sprague-Dawley rat with Ang II-induced renal injury].
    Zheng Y; Liu ZQ; Ye T; He L; Wang Y; Fang Y; Li JN; Liu P; Ye F
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Jul; 25(7):827-32. PubMed ID: 16027079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A two-stage regulatory system for pressure-constant perfusion of coronary vessels].
    Skyschally A; Schulz R; Linder C; Heusch G
    Biomed Tech (Berl); 1991 Jun; 36(6):140-4. PubMed ID: 1883927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent autoregulation of renal blood flow in conscious rats.
    Flemming B; Arenz N; Seeliger E; Wronski T; Steer K; Persson PB
    J Am Soc Nephrol; 2001 Nov; 12(11):2253-2262. PubMed ID: 11675401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.