BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 19357332)

  • 1. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity.
    Yu BM; Cunningham JP; Santhanam G; Ryu SI; Shenoy KV; Sahani M
    J Neurophysiol; 2009 Jul; 102(1):614-35. PubMed ID: 19357332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting Low-Dimensional Latent Structure from Time Series in the Presence of Delays.
    Lakshmanan KC; Sadtler PT; Tyler-Kabara EC; Batista AP; Yu BM
    Neural Comput; 2015 Sep; 27(9):1825-56. PubMed ID: 26079746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common goodness-of-fit framework for neural population models using marked point process time-rescaling.
    Tao L; Weber KE; Arai K; Eden UT
    J Comput Neurosci; 2018 Oct; 45(2):147-162. PubMed ID: 30298220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
    Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN
    J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying the multivariate time-rescaling theorem to neural population models.
    Gerhard F; Haslinger R; Pipa G
    Neural Comput; 2011 Jun; 23(6):1452-83. PubMed ID: 21395436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.
    Shimazaki H; Amari S; Brown EN; Grün S
    PLoS Comput Biol; 2012; 8(3):e1002385. PubMed ID: 22412358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden-Markov Factor analysis as a spatiotemporal model for electrocorticography.
    Omigbodun A; Doyle WK; Devinsky O; Friedman D; Thesen T; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1632-1635. PubMed ID: 28268642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spiking neural integrator model of the adaptive control of action by the medial prefrontal cortex.
    Bekolay T; Laubach M; Eliasmith C
    J Neurosci; 2014 Jan; 34(5):1892-902. PubMed ID: 24478368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Granger causality measure for point process models of ensemble neural spiking activity.
    Kim S; Putrino D; Ghosh S; Brown EN
    PLoS Comput Biol; 2011 Mar; 7(3):e1001110. PubMed ID: 21455283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between single neuron and population spiking statistics and effects on network activity.
    Câteau H; Reyes AD
    Phys Rev Lett; 2006 Feb; 96(5):058101. PubMed ID: 16486995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear-nonlinear-time-warp-poisson models of neural activity.
    Lawlor PN; Perich MG; Miller LE; Kording KP
    J Comput Neurosci; 2018 Dec; 45(3):173-191. PubMed ID: 30294750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains.
    Casile A; Faghih RT; Brown EN
    PLoS Comput Biol; 2021 Jan; 17(1):e1007675. PubMed ID: 33493162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Estimation of Neural Population Dynamics without Spike Sorting.
    Trautmann EM; Stavisky SD; Lahiri S; Ames KC; Kaufman MT; O'Shea DJ; Vyas S; Sun X; Ryu SI; Ganguli S; Shenoy KV
    Neuron; 2019 Jul; 103(2):292-308.e4. PubMed ID: 31171448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning probabilistic neural representations with randomly connected circuits.
    Maoz O; Tkačik G; Esteki MS; Kiani R; Schneidman E
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):25066-25073. PubMed ID: 32948691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks.
    DePasquale B; Sussillo D; Abbott LF; Churchland MM
    Neuron; 2023 Mar; 111(5):631-649.e10. PubMed ID: 36630961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking structure and activity in nonlinear spiking networks.
    Ocker GK; Josić K; Shea-Brown E; Buice MA
    PLoS Comput Biol; 2017 Jun; 13(6):e1005583. PubMed ID: 28644840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.