BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 19357334)

  • 1. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses.
    Heil P; Neubauer H; Irvine DR; Brown M
    J Neurosci; 2007 Aug; 27(31):8457-74. PubMed ID: 17670993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba.
    Köppl C
    J Neurophysiol; 1997 Jan; 77(1):364-77. PubMed ID: 9120577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coding of sound pressure level in the barn owl's auditory nerve.
    Köppl C; Yates G
    J Neurosci; 1999 Nov; 19(21):9674-86. PubMed ID: 10531469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba).
    Engler S; Köppl C; Manley GA; de Kleine E; van Dijk P
    Hear Res; 2020 Jan; 385():107835. PubMed ID: 31710933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spontaneous activity in the single auditory nerve fiber in the pigeon].
    Temchin AN
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jan; 69(1):26-33. PubMed ID: 6825888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coding interaural time differences at low best frequencies in the barn owl.
    Carr CE; Köppl C
    J Physiol Paris; 2004; 98(1-3):99-112. PubMed ID: 15477025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing.
    Zahar Y; Reches A; Gutfreund Y
    J Neurophysiol; 2009 May; 101(5):2380-94. PubMed ID: 19261710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adaptation of visual and auditory integration in the barn owl superior colliculus with Spike Timing Dependent Plasticity.
    Huo J; Murray A
    Neural Netw; 2009 Sep; 22(7):913-21. PubMed ID: 19084371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer model of medial efferent suppression in the mammalian auditory system.
    Ferry RT; Meddis R
    J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Markov model for interspike interval distributions of auditory cortical neurons that do not show periodic firings.
    Britvina T; Eggermont JJ
    Biol Cybern; 2007 Feb; 96(2):245-64. PubMed ID: 17082952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability.
    Balaguer-Ballester E; Coath M; Denham SL
    Biol Cybern; 2007 Dec; 97(5-6):479-91. PubMed ID: 17994247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Manifestations of dynamic coding of the amplitude-modulated sounds on the level of auditory nerve fibres].
    Rimskaia-Korsakova LK; Telepnev VN; Dubrovskiĭ NA
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):700-14. PubMed ID: 12966708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.