These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 19357497)

  • 41. Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer.
    Zhao YH; Zhu BK; Kong L; Xu YY
    Langmuir; 2007 May; 23(10):5779-86. PubMed ID: 17408299
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility.
    Liu Z; Deng X; Wang M; Chen J; Zhang A; Gu Z; Zhao C
    J Biomater Sci Polym Ed; 2009; 20(3):377-97. PubMed ID: 19192362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of protein fouling on heat-treated poly(vinyl alcohol), poly(ether sulfone) and regenerated cellulose membranes using diffuse reflectance infrared Fourier transform spectroscopy.
    Amanda A; Mallapragada SK
    Biotechnol Prog; 2001; 17(5):917-23. PubMed ID: 11587584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical adsorption of human thrombomodulin (ART-123) onto polymeric biomaterials for developing an antithrombogenic blood-contacting material.
    Matsusaki M; Omichi M; Maruyama I; Akashi M
    J Biomed Mater Res A; 2008 Jan; 84(1):1-9. PubMed ID: 17584906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Use of modern microscopic techniques for examining dialysis membrane properties].
    Kowal A; Nowak S; Sułowicz W; Pietrzyk JA; Krawentek L; Drozdz M; Nowogrodzka-Zagórska M; Bal W
    Przegl Lek; 2000; 57(12):702-6. PubMed ID: 11398590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A New Polysulfone Membrane Dialyzer, NV, with Low-Fouling and Antithrombotic Properties.
    Oshihara W; Ueno Y; Fujieda H
    Contrib Nephrol; 2017; 189():222-229. PubMed ID: 27951572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insight in the role of bovine serum albumin for promoting the in situ surface growth of polyhydroxybutyrate (PHB) on patterned surfaces via enzymatic surface-initiated polymerization.
    Niamsiri N; Bergkvist M; Delamarre SC; Cady NC; Coates GW; Ober CK; Batt CA
    Colloids Surf B Biointerfaces; 2007 Oct; 60(1):68-79. PubMed ID: 17629682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Membrane roughness: A relevant concept in haemodialysis].
    Chanard J; Thomas M; Rieu P
    Nephrol Ther; 2010 Jun; 6(3):158-61. PubMed ID: 20359975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adsorption techniques: dialysis sorbents and membranes.
    Perego AF
    Blood Purif; 2013; 35 Suppl 2():48-51. PubMed ID: 23676836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. IR study of self-assembly of capsular exopolymers from Pseudomonas sp. NCIMB 2021 on hydrophilic and hydrophobic surfaces.
    Kalaji M; Neal AL
    Biopolymers; 2000; 57(1):43-50. PubMed ID: 10679639
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences in the adsorption of nafamostat mesilate between polyester-polymer alloy and polysulfone membranes.
    Goto S; Ookawara S; Saito A
    J Artif Organs; 2017 Jun; 20(2):138-144. PubMed ID: 27896500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface topography and surface elemental composition analysis of Helixone, a new high-flux polysulfone dialysis membrane.
    Bowry SK; Ronco C
    Int J Artif Organs; 2001 Nov; 24(11):757-64. PubMed ID: 11797845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces.
    Chen H; Hu X; Zhang Y; Li D; Wu Z; Zhang T
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):237-43. PubMed ID: 17920250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.
    Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML
    Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characteristics and molecular mechanism of adhesion proteins on reused hemodialysis membranes.
    Xu X; Yang Y; Zhu N
    Blood Purif; 2009; 27(4):321-9. PubMed ID: 19270451
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles.
    Rakhmatullina E; Meier W
    Langmuir; 2008 Jun; 24(12):6254-61. PubMed ID: 18481881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poly(N-vinyl-2-pyrrolidone) elution from polysulfone dialysis membranes by varying solvent and wall shear stress.
    Namekawa K; Matsuda M; Fukuda M; Kaneko A; Sakai K
    J Artif Organs; 2012 Jun; 15(2):185-92. PubMed ID: 22311608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces.
    Messina GM; Satriano C; Marletta G
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):76-83. PubMed ID: 19162451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The adsorption of human serum albumin (HSA) on CO2 laser modified magnesia partially stabilised zirconia (MgO-PSZ).
    Hao L; Lawrence J
    Colloids Surf B Biointerfaces; 2004 Mar; 34(2):87-94. PubMed ID: 15261078
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregation of HSA, IgG, and Fibrinogen on Methylated Silicon Surfaces.
    Ortega-Vinuesa JL; Tengvall P; Lundström I
    J Colloid Interface Sci; 1998 Nov; 207(2):228-239. PubMed ID: 9792766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.