These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19357778)

  • 1. An estimate of the numbers and density of low-energy structures (or decoys) in the conformational landscape of proteins.
    Vadivel K; Namasivayam G
    PLoS One; 2009; 4(4):e5148. PubMed ID: 19357778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins.
    Liwo A; Khalili M; Czaplewski C; Kalinowski S; OƂdziej S; Wachucik K; Scheraga HA
    J Phys Chem B; 2007 Jan; 111(1):260-85. PubMed ID: 17201450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced sampling of the molecular potential energy surface using mutually orthogonal latin squares: application to peptide structures.
    Vengadesan K; Gautham N
    Biophys J; 2003 May; 84(5):2897-906. PubMed ID: 12719222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding proteins with a simple energy function and extensive conformational searching.
    Yue K; Dill KA
    Protein Sci; 1996 Feb; 5(2):254-61. PubMed ID: 8745403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics.
    Keasar C; Levitt M
    J Mol Biol; 2003 May; 329(1):159-74. PubMed ID: 12742025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS; Chan SI; Goddard WA
    Protein Sci; 1995 Oct; 4(10):2019-31. PubMed ID: 8535238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the energy landscape of model proteins: a metric criterion for the determination of dynamical connectivity.
    Bongini L; Livi R; Politi A; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051929. PubMed ID: 16383667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking polypeptide folds on the free energy surface: effects of the chain length and sequence.
    Brukhno AV; Ricchiuto P; Auer S
    J Phys Chem B; 2012 Jul; 116(29):8703-13. PubMed ID: 22624618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization.
    Vajda S; Jafri MS; Sezerman OU; DeLisi C
    Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy landscape and dynamics of the beta-hairpin G peptide and its isomers: Topology and sequences.
    Ma B; Nussinov R
    Protein Sci; 2003 Sep; 12(9):1882-93. PubMed ID: 12930988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin.
    Ripoll DR; Scheraga HA
    Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the Trp-cage miniprotein based on the ECEPP/3 force field.
    Zhan L; Chen JZ; Liu WK
    Proteins; 2007 Feb; 66(2):436-43. PubMed ID: 17094111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and energy landscape of a photoswitchable peptide: a replica exchange molecular dynamics study.
    Nguyen PH; Mu Y; Stock G
    Proteins; 2005 Aug; 60(3):485-94. PubMed ID: 15977160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the conformation of folding initiation sites in proteins by computer simulation.
    Avbelj F; Moult J
    Proteins; 1995 Oct; 23(2):129-41. PubMed ID: 8592695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio modeling of small, medium, and large loops in proteins.
    Galaktionov S; Nikiforovich GV; Marshall GR
    Biopolymers; 2001; 60(2):153-68. PubMed ID: 11455548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed-replica exchange molecular dynamics method for protein folding simulation.
    Rhee YM; Pande VS
    Biophys J; 2003 Feb; 84(2 Pt 1):775-86. PubMed ID: 12547762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.