These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19358289)

  • 1. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2009 Sep; 140(1):149-59. PubMed ID: 19358289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in fibular robusticity reflects variation in mobility patterns.
    Marchi D; Shaw CN
    J Hum Evol; 2011 Nov; 61(5):609-16. PubMed ID: 21937082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme mobility in the Late Pleistocene? Comparing limb biomechanics among fossil Homo, varsity athletes and Holocene foragers.
    Shaw CN; Stock JT
    J Hum Evol; 2013 Apr; 64(4):242-9. PubMed ID: 23453436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic plasticity and constraint along the upper and lower limb diaphyses of Homo sapiens.
    Nadell JA; Shaw CN
    Am J Phys Anthropol; 2016 Mar; 159(3):410-22. PubMed ID: 26536841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy.
    Stock JT
    Am J Phys Anthropol; 2006 Oct; 131(2):194-204. PubMed ID: 16596600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2011 Jan; 144(1):22-9. PubMed ID: 20623683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking structural variability in long bone diaphyses to habitual behaviors: foragers from the southern African Later Stone Age and the Andaman Islands.
    Stock J; Pfeiffer S
    Am J Phys Anthropol; 2001 Aug; 115(4):337-48. PubMed ID: 11471132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relative position of the human fibula to the tibia influences cross-sectional properties of the tibia.
    Auerbach BM; Gooding AF; Shaw CN; Sylvester AD
    Am J Phys Anthropol; 2017 May; 163(1):148-157. PubMed ID: 28218393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2009 Sep; 140(1):160-72. PubMed ID: 19358297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Putting flesh back onto the bones?' Can we predict soft tissue properties from skeletal and fossil remains?
    Shaw C
    J Hum Evol; 2010 Nov; 59(5):484-92. PubMed ID: 20688357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: a pQCT study of female athletes representing different exercise loading types.
    Rantalainen T; Nikander R; Heinonen A; Suominen H; Sievänen H
    Calcif Tissue Int; 2010 Jun; 86(6):447-54. PubMed ID: 20383493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinations of trabecular and cortical bone properties distinguish various loading modalities between athletes and controls.
    Saers JPP; DeMars LJ; Stephens NB; Jashashvili T; Carlson KJ; Gordon AD; Shaw CN; Ryan TM; Stock JT
    Am J Phys Anthropol; 2021 Mar; 174(3):434-450. PubMed ID: 33244746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of cortical bone geometry in the human femoral and tibial diaphysis.
    Gosman JH; Hubbell ZR; Shaw CN; Ryan TM
    Anat Rec (Hoboken); 2013 May; 296(5):774-87. PubMed ID: 23533061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased non-linear locomotion alters diaphyseal bone shape.
    Carlson KJ; Judex S
    J Exp Biol; 2007 Sep; 210(Pt 17):3117-25. PubMed ID: 17704086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contours of the hominoid lateral tibial condyle with implications for Australopithecus.
    Organ JM; Ward CV
    J Hum Evol; 2006 Aug; 51(2):113-27. PubMed ID: 16563467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is 'hand preference' coded in the hominin skeleton? An in-vivo study of bilateral morphological variation.
    Shaw CN
    J Hum Evol; 2011 Oct; 61(4):480-7. PubMed ID: 21839491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH; Rivera JP; Zhang C; Ebba SA
    J Morphol; 2008 Mar; 269(3):313-8. PubMed ID: 17957711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative strength of the tibia and fibula and locomotor behavior in hominoids.
    Marchi D
    J Hum Evol; 2007 Dec; 53(6):647-55. PubMed ID: 17675139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb.
    Holt BM
    Am J Phys Anthropol; 2003 Nov; 122(3):200-15. PubMed ID: 14533179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings.
    Nikander R; Kannus P; Rantalainen T; Uusi-Rasi K; Heinonen A; Sievänen H
    Osteoporos Int; 2010 Oct; 21(10):1687-94. PubMed ID: 19921084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.