These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19358521)

  • 1. Laser-induced force on a microfluidic drop: origin and magnitude.
    Verneuil E; Cordero M; Gallaire F; Baroud CN
    Langmuir; 2009 May; 25(9):5127-34. PubMed ID: 19358521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Adsorption-Desorption-Controlled Surfactant on a Deforming Droplet.
    Eggleton CD; Stebe KJ
    J Colloid Interface Sci; 1998 Dec; 208(1):68-80. PubMed ID: 9820750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic approach for rapid interfacial tension measurement.
    Xu JH; Li SW; Lan WJ; Luo GS
    Langmuir; 2008 Oct; 24(19):11287-92. PubMed ID: 18785714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Insoluble Surfactants on the Pressure-Driven Motion of a Drop in a Tube in the Limit of High Surface Coverage.
    Johnson RA; Borhan A
    J Colloid Interface Sci; 1999 Oct; 218(1):184-200. PubMed ID: 10489292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced "stick-slip" on superhydrophilic semiconductor surfaces.
    Denison KR; Boxall C
    Langmuir; 2007 Apr; 23(8):4358-66. PubMed ID: 17367173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration-actuated drop motion on surfaces for batch microfluidic processes.
    Daniel S; Chaudhury MK; de Gennes PG
    Langmuir; 2005 Apr; 21(9):4240-8. PubMed ID: 15836001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops.
    Velankar S; Zhou H; Jeon HK; Macosko CW
    J Colloid Interface Sci; 2004 Apr; 272(1):172-85. PubMed ID: 14985035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer.
    Pojman JA; Whitmore C; Turco Liveri ML; Lombardo R; Marszalek J; Parker R; Zoltowski B
    Langmuir; 2006 Mar; 22(6):2569-77. PubMed ID: 16519456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdrops on atomic force microscope cantilevers: evaporation of water and spring constant calibration.
    Bonaccurso E; Butt HJ
    J Phys Chem B; 2005 Jan; 109(1):253-63. PubMed ID: 16851011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Contact Motion of Surfactant-Covered Spherical Drops: Ionic Surfactant.
    Blawzdziewicz J; Cristini V; Loewenberg M
    J Colloid Interface Sci; 1999 Mar; 211(2):355-366. PubMed ID: 10049551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility.
    Johnson RA; Borhan A
    J Colloid Interface Sci; 2003 May; 261(2):529-41. PubMed ID: 16256565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow.
    Bazhlekov IB; Anderson PD; Meijer HE
    J Colloid Interface Sci; 2006 Jun; 298(1):369-94. PubMed ID: 16412455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing.
    Robert de Saint Vincent M; Delville JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026310. PubMed ID: 22463320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic forces acting on a microscopic emulsion drop growing at a capillary tip in relation to the process of membrane emulsification.
    Danov KD; Danova DK; Kralchevsky PA
    J Colloid Interface Sci; 2007 Dec; 316(2):844-57. PubMed ID: 17900600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle bridging between oil and water interfaces.
    Xu H; Lask M; Kirkwood J; Fuller G
    Langmuir; 2007 Apr; 23(9):4837-41. PubMed ID: 17378596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow with Joule heating effects.
    Xuan X; Xu B; Sinton D; Li D
    Lab Chip; 2004 Jun; 4(3):230-6. PubMed ID: 15159784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers.
    Balasubramaniam R; Subramanian RS
    Ann N Y Acad Sci; 2004 Nov; 1027():303-10. PubMed ID: 15644363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical study of the effect of insoluble surfactants on the stability of a viscous drop translating in a Hele-Shaw cell.
    Gupta NR; Nadim A; Haj-Hariri H; Borhan A
    J Colloid Interface Sci; 2002 Aug; 252(1):236-48. PubMed ID: 16290784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.