These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 19358592)

  • 1. NH4(+) + CH4 gas phase collisions as a possible analogue to protonated peptide/surface induced dissociation.
    Barnes GL; Hase WL
    J Phys Chem A; 2009 Jul; 113(26):7543-7. PubMed ID: 19358592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation and reactivity in collisions of protonated diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces.
    Barnes GL; Young K; Yang L; Hase WL
    J Chem Phys; 2011 Mar; 134(9):094106. PubMed ID: 21384949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the dynamics of hyperthermal collisions of Ar with a fluorinated alkanethiolate self-assembled monolayer.
    Tasić U; Troya D
    Phys Chem Chem Phys; 2008 Oct; 10(37):5776-86. PubMed ID: 18956114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of energy transfer in collisions of O(3P) atoms with a 1-decanethiol self-assembled monolayer surface.
    Tasić US; Yan T; Hase WL
    J Phys Chem B; 2006 Jun; 110(24):11863-77. PubMed ID: 16800489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer, unfolding, and fragmentation dynamics in collisions of N-protonated octaglycine with an H-SAM surface.
    Barnes GL; Hase WL
    J Am Chem Soc; 2009 Dec; 131(47):17185-93. PubMed ID: 19929018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of BBr(n)(+) (n = 0--2) at fluorinated and hydrocarbon self-assembled monolayer surfaces: observations of chemical selectivity in ion--surface scattering.
    Wade N; Shen J; Koskinen J; Cooks RG
    J Mass Spectrom; 2001 Jul; 36(7):717-25. PubMed ID: 11473394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shattering of Peptide ions on self-assembled monolayer surfaces.
    Laskin J; Bailey TH; Futrell JH
    J Am Chem Soc; 2003 Feb; 125(6):1625-32. PubMed ID: 12568624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical potential energy function to model protonated peptide soft-landing experiments. The CH3NH3+/CH4 interactions.
    Deb B; Hu W; Song K; Hase WL
    Phys Chem Chem Phys; 2008 Aug; 10(31):4565-72. PubMed ID: 18665306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silylation of an OH-terminated self-assembled monolayer surface through low-energy collisions of ions: a novel route to synthesis and patterning of surfaces.
    Wade N; Evans C; Jo SC; Cooks RG
    J Mass Spectrom; 2002 Jun; 37(6):591-602. PubMed ID: 12112741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces.
    Wang P; Hadjar O; Gassman PL; Laskin J
    Phys Chem Chem Phys; 2008 Mar; 10(11):1512-22. PubMed ID: 18327307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of projectile and surface temperatures in the energy transfer dynamics of protonated peptide ion collisions with the diamond {111} surface.
    Rahaman A; Collins O; Scott C; Wang J; Hase WL
    J Phys Chem A; 2006 Jul; 110(27):8418-22. PubMed ID: 16821824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics and dynamics of electron transfer and proton transfer in dissociation of metal(III)(salen)-peptide complexes in the gas phase.
    Laskin J; Yang Z; Chu IK
    J Am Chem Soc; 2008 Mar; 130(10):3218-30. PubMed ID: 18266367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study.
    Radak BK; Yockel S; Kim D; Schatz GC
    J Phys Chem A; 2009 Jul; 113(26):7218-26. PubMed ID: 19323516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasiclassical trajectory study of energy transfer and collision-induced dissociation in hyperthermal Ar + CH4 and Ar + CF4 collisions.
    Troya D
    J Phys Chem A; 2005 Jul; 109(26):5814-24. PubMed ID: 16833915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas phase fragmentation of protonated betaine and its clusters.
    Wyer JA; Feketeová L; Brøndsted Nielsen S; O'Hair RA
    Phys Chem Chem Phys; 2009 Oct; 11(39):8752-8. PubMed ID: 20449019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-surface energy exchange and thermal accommodation of CO2 and Ar in collisions with methyl, hydroxyl, and perfluorinated self-assembled monolayers.
    Lu JW; Alexander WA; Morris JR
    Phys Chem Chem Phys; 2010 Oct; 12(39):12533-43. PubMed ID: 20730132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular potential to represent collisions of protonated peptide ions with fluorinated alkane surfaces.
    Wang J; Hase WL
    J Phys Chem B; 2005 May; 109(17):8320-4. PubMed ID: 16851975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of energy transfer in peptide-surface collisions.
    Meroueh O; Hase WL
    J Am Chem Soc; 2002 Feb; 124(7):1524-31. PubMed ID: 11841324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical dynamics simulations of energy transfer, surface-induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with organic surfaces.
    Pratihar S; Barnes GL; Hase WL
    Chem Soc Rev; 2016 Jul; 45(13):3595-608. PubMed ID: 26563571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.