These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19358740)

  • 21. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends.
    German MA; Pillay M; Jeong DH; Hetawal A; Luo S; Janardhanan P; Kannan V; Rymarquis LA; Nobuta K; German R; De Paoli E; Lu C; Schroth G; Meyers BC; Green PJ
    Nat Biotechnol; 2008 Aug; 26(8):941-6. PubMed ID: 18542052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational identification of novel microRNAs and targets in Brassica napus.
    Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM
    FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. tRex: A Web Portal for Exploration of tRNA-Derived Fragments in Arabidopsis thaliana.
    Thompson A; Zielezinski A; Plewka P; Szymanski M; Nuc P; Szweykowska-Kulinska Z; Jarmolowski A; Karlowski WM
    Plant Cell Physiol; 2018 Jan; 59(1):e1. PubMed ID: 29145635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology.
    Zhang B; Xie D; Jin Z
    J Integr Plant Biol; 2012 Feb; 54(2):73-86. PubMed ID: 22221297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational prediction of miRNAs in Arabidopsis thaliana.
    Adai A; Johnson C; Mlotshwa S; Archer-Evans S; Manocha V; Vance V; Sundaresan V
    Genome Res; 2005 Jan; 15(1):78-91. PubMed ID: 15632092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elucidation of the small RNA component of the transcriptome.
    Lu C; Tej SS; Luo S; Haudenschild CD; Meyers BC; Green PJ
    Science; 2005 Sep; 309(5740):1567-9. PubMed ID: 16141074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs.
    Cabrera J; Barcala M; García A; Rio-Machín A; Medina C; Jaubert-Possamai S; Favery B; Maizel A; Ruiz-Ferrer V; Fenoll C; Escobar C
    New Phytol; 2016 Mar; 209(4):1625-40. PubMed ID: 26542733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.
    Jones-Rhoades MW; Bartel DP
    Mol Cell; 2004 Jun; 14(6):787-99. PubMed ID: 15200956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.
    Rajagopalan R; Vaucheret H; Trejo J; Bartel DP
    Genes Dev; 2006 Dec; 20(24):3407-25. PubMed ID: 17182867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.
    Hsieh LC; Lin SI; Shih AC; Chen JW; Lin WY; Tseng CY; Li WH; Chiou TJ
    Plant Physiol; 2009 Dec; 151(4):2120-32. PubMed ID: 19854858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PmiRKB: a plant microRNA knowledge base.
    Meng Y; Gou L; Chen D; Mao C; Jin Y; Wu P; Chen M
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D181-7. PubMed ID: 20719744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
    Yang X; Zhang H; Li L
    Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus.
    Tagami Y; Inaba N; Kutsuna N; Kurihara Y; Watanabe Y
    DNA Res; 2007 Oct; 14(5):227-33. PubMed ID: 18056073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana.
    Grant-Downton R; Le Trionnaire G; Schmid R; Rodriguez-Enriquez J; Hafidh S; Mehdi S; Twell D; Dickinson H
    BMC Genomics; 2009 Dec; 10():643. PubMed ID: 20042113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of small RNA cDNA libraries for deep sequencing.
    Lu C; Meyers BC; Green PJ
    Methods; 2007 Oct; 43(2):110-7. PubMed ID: 17889797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mining small RNA sequencing data: a new approach to identify small nucleolar RNAs in Arabidopsis.
    Chen HM; Wu SH
    Nucleic Acids Res; 2009 May; 37(9):e69. PubMed ID: 19357091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of novel miRNAs and associated target genes in Glycine max.
    Joshi T; Yan Z; Libault M; Jeong DH; Park S; Green PJ; Sherrier DJ; Farmer A; May G; Meyers BC; Xu D; Stacey G
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S14. PubMed ID: 20122185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. tRNAmodpred: A computational method for predicting posttranscriptional modifications in tRNAs.
    Machnicka MA; Dunin-Horkawicz S; de Crécy-Lagard V; Bujnicki JM
    Methods; 2016 Sep; 107():34-41. PubMed ID: 27016142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.