BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19358819)

  • 1. Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM.
    Chen PF; Wu KK
    Arch Biochem Biophys; 2009 Jun; 486(2):132-40. PubMed ID: 19358819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer.
    Daff S; Sagami I; Shimizu T
    J Biol Chem; 1999 Oct; 274(43):30589-95. PubMed ID: 10521442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes.
    Wu G; Berka V; Tsai AL
    J Inorg Biochem; 2011 Sep; 105(9):1226-37. PubMed ID: 21763233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase.
    Chen PF; Wu KK
    J Biol Chem; 2003 Dec; 278(52):52392-400. PubMed ID: 14561757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lobe-specific calcium binding in calmodulin regulates endothelial nitric oxide synthase activation.
    Wu PR; Kuo CC; Yet SF; Liou JY; Wu KK; Chen PF
    PLoS One; 2012; 7(6):e39851. PubMed ID: 22768143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer.
    Chen PF; Wu KK
    J Biol Chem; 2000 Apr; 275(17):13155-63. PubMed ID: 10777622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2007 Jul; 46(28):8288-300. PubMed ID: 17580957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
    Newman E; Spratt DE; Mosher J; Cheyne B; Montgomery HJ; Wilson DL; Weinberg JB; Smith SM; Salerno JC; Ghosh DK; Guillemette JG
    J Biol Chem; 2004 Aug; 279(32):33547-57. PubMed ID: 15138276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms of regulation by calmodulin of nitric oxide synthase].
    Gervaziev IuV; Sokolov NN
    Vopr Med Khim; 1999; 45(3):187-99. PubMed ID: 10432553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases.
    Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X
    J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases.
    Panda SP; Gao YT; Roman LJ; Martásek P; Salerno JC; Masters BS
    J Biol Chem; 2006 Nov; 281(45):34246-57. PubMed ID: 16966328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
    Spratt DE; Newman E; Mosher J; Ghosh DK; Salerno JC; Guillemette JG
    FEBS J; 2006 Apr; 273(8):1759-71. PubMed ID: 16623711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holoenzyme structures of endothelial nitric oxide synthase - an allosteric role for calmodulin in pivoting the FMN domain for electron transfer.
    Volkmann N; Martásek P; Roman LJ; Xu XP; Page C; Swift M; Hanein D; Masters BS
    J Struct Biol; 2014 Oct; 188(1):46-54. PubMed ID: 25175399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases.
    Venema RC; Sayegh HS; Kent JD; Harrison DG
    J Biol Chem; 1996 Mar; 271(11):6435-40. PubMed ID: 8626444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90.
    Takahashi S; Mendelsohn ME
    J Biol Chem; 2003 Mar; 278(11):9339-44. PubMed ID: 12519764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of nitric oxide synthase-calmodulin interactions at physiological calcium concentrations.
    Piazza M; Guillemette JG; Dieckmann T
    Biochemistry; 2015 Mar; 54(11):1989-2000. PubMed ID: 25751535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraprotein electron transfer in a two-domain construct of neuronal nitric oxide synthase: the output state in nitric oxide formation.
    Feng C; Tollin G; Holliday MA; Thomas C; Salerno JC; Enemark JH; Ghosh DK
    Biochemistry; 2006 May; 45(20):6354-62. PubMed ID: 16700546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation.
    Piazza M; Futrega K; Spratt DE; Dieckmann T; Guillemette JG
    Biochemistry; 2012 May; 51(17):3651-61. PubMed ID: 22486744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial nitric oxide synthase is regulated by ERK phosphorylation at Ser602.
    Salerno JC; Ghosh DK; Razdan R; Helms KA; Brown CC; McMurry JL; Rye EA; Chrestensen CA
    Biosci Rep; 2014 Sep; 34(5):. PubMed ID: 25000310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis.
    Ghosh S; Gachhui R; Crooks C; Wu C; Lisanti MP; Stuehr DJ
    J Biol Chem; 1998 Aug; 273(35):22267-71. PubMed ID: 9712842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.