BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 19359077)

  • 1. A coupled simulation-optimization approach for groundwater remediation design under uncertainty: an application to a petroleum-contaminated site.
    He L; Huang GH; Lu HW
    Environ Pollut; 2009; 157(8-9):2485-92. PubMed ID: 19359077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada.
    He L; Huang GH; Zeng GM; Lu HW
    Water Res; 2008 May; 42(10-11):2629-39. PubMed ID: 18308365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.
    He L; Huang GH; Lu HW
    J Hazard Mater; 2010 Apr; 176(1-3):521-6. PubMed ID: 20006432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design: part II. Model application.
    He L; Huang GH; Lu HW
    J Hazard Mater; 2010 Apr; 176(1-3):527-34. PubMed ID: 20006433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and optimization technologies for petroleum waste management and remediation process control.
    Qin XS; Huang GH; He L
    J Environ Manage; 2009 Jan; 90(1):54-76. PubMed ID: 18694620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty.
    Li J; He L; Lu H; Fan X
    J Hazard Mater; 2014 Aug; 279():257-67. PubMed ID: 25064263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogeo-chemical impacts of air sparging remediation on a semi-confined aquifer: evidences from field monitoring and modeling.
    Fan W; Yang YS; Lu Y; Du XQ; Zhang GX
    Chemosphere; 2013 Jan; 90(4):1419-26. PubMed ID: 23021385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-stage optimal design for groundwater remediation: a hybrid bi-level programming approach.
    Zou Y; Huang GH; He L; Li H
    J Contam Hydrol; 2009 Aug; 108(1-2):64-76. PubMed ID: 19559499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites.
    Qin XS; Huang GH; Chakma A; Chen B; Zeng GM
    Sci Total Environ; 2007 Aug; 381(1-3):17-37. PubMed ID: 17509664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization-based multicriteria decision analysis for identification of desired petroleum-contaminated groundwater remediation strategies.
    Lu H; Feng M; He L; Ren L
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9505-14. PubMed ID: 25613797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental- and health-risk-induced remediation design for benzene-contaminated groundwater under parameter uncertainty: a case study in Western Canada.
    Fan X; He L; Lu HW; Li J
    Chemosphere; 2014 Sep; 111():604-12. PubMed ID: 24997972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Groundwater remediation: the next 30 years.
    Hadley PW; Newell CJ
    Ground Water; 2012; 50(5):669-78. PubMed ID: 22612359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of optimal groundwater remediation systems under flexible environmental-standard constraints.
    Fan X; He L; Lu HW; Li J
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1008-19. PubMed ID: 25106520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.
    Mohamed AM; El-menshawy N; Saif AM
    J Environ Manage; 2007 May; 83(3):339-50. PubMed ID: 16844283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.
    Liang SH; Kao CM; Kuo YC; Chen KF; Yang BM
    Water Res; 2011 Apr; 45(8):2496-506. PubMed ID: 21396673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality.
    Carroll KC; Oostrom M; Truex MJ; Rohay VJ; Brusseau ML
    J Contam Hydrol; 2012 Feb; 128(1-4):71-82. PubMed ID: 22192346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.
    Seeger EM; Maier U; Grathwohl P; Kuschk P; Kaestner M
    Water Res; 2013 Feb; 47(2):769-80. PubMed ID: 23200508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater quality assessment of one former industrial site in Belgium using a TRIAD-like approach.
    Crévecoeur S; Debacker V; Joaquim-Justo C; Gobert S; Scippo ML; Dejonghe W; Martin P; Thomé JP
    Environ Pollut; 2011 Oct; 159(10):2461-6. PubMed ID: 21764196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of NAPL source zones: lessons learned from field studies at Hill and Dover AFB.
    McCray JE; Tick GR; Jawitz JW; Gierke JS; Brusseau ML; Falta RW; Knox RC; Sabatini DA; Annable MD; Harwell JH; Wood AL
    Ground Water; 2011; 49(5):727-44. PubMed ID: 21299555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the value of reducing uncertainty by sampling in a groundwater remediation system.
    Ma HW; Chang CC
    Sci Total Environ; 2008 Aug; 402(1):9-17. PubMed ID: 18539311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.