These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 19359206)
1. Quantitative structure-retention relationship modelling of esters on stationary phases of different polarity. Souza ES; Kuhnen CA; Junkes Bda S; Yunes RA; Heinzen VE J Mol Graph Model; 2009 Aug; 28(1):20-7. PubMed ID: 19359206 [TBL] [Abstract][Full Text] [Related]
2. Semi-empirical topological index: development of QSPR/QSRR and optimization for alkylbenzenes. Porto LC; Souza ES; Junkes Bda S; Yunes RA; Heinzen VE Talanta; 2008 Jul; 76(2):407-12. PubMed ID: 18585298 [TBL] [Abstract][Full Text] [Related]
3. Theoretical prediction of the Kovat's retention index for oxygen-containing organic compounds using novel topological indices. Liu F; Liang Y; Cao C; Zhou N Anal Chim Acta; 2007 Jul; 594(2):279-89. PubMed ID: 17586126 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling of quantitative structure retention relationship studies: retention behavior of polychlorinated dibenzofurans on gas chromatographic stationary phases of varying polarity by a novel molecular distance edge vector. Lin Z; Liu S; Li Z J Chromatogr Sci; 2002 Jan; 40(1):7-13. PubMed ID: 11866390 [TBL] [Abstract][Full Text] [Related]
5. Quantitative structure and retention relationships for gas chromatographic data: application to alkyl pyridines on apolar and polar phases. Tulasamma P; Reddy KS J Mol Graph Model; 2006 Dec; 25(4):507-13. PubMed ID: 16713723 [TBL] [Abstract][Full Text] [Related]
6. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600 [TBL] [Abstract][Full Text] [Related]
7. Comparison of quantitative structure-retention relationship models on four stationary phases with different polarity for a diverse set of flavor compounds. Yan J; Cao DS; Guo FQ; Zhang LX; He M; Huang JH; Xu QS; Liang YZ J Chromatogr A; 2012 Feb; 1223():118-25. PubMed ID: 22218329 [TBL] [Abstract][Full Text] [Related]
8. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices. Liu F; Liang Y; Cao C; Zhou N Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762 [TBL] [Abstract][Full Text] [Related]
9. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases. Biancolillo A; D'Archivio AA J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535 [TBL] [Abstract][Full Text] [Related]
10. A QSPR study of the p solute polarity parameter to estimate retention in HPLC. Bosque R; Sales J; Bosch E; Rosés M; García-Alvarez-Coque MC; Torres-Lapasió JR J Chem Inf Comput Sci; 2003; 43(4):1240-7. PubMed ID: 12870917 [TBL] [Abstract][Full Text] [Related]
11. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds. Héberger K; Zenkevich IG J Chromatogr A; 2010 Apr; 1217(17):2895-902. PubMed ID: 20236649 [TBL] [Abstract][Full Text] [Related]
12. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Wang Y; Li A; Liu H; Zhang Q; Ma W; Song W; Jiang G J Chromatogr A; 2006 Jan; 1103(2):314-28. PubMed ID: 16352309 [TBL] [Abstract][Full Text] [Related]
13. Cross-column prediction of gas-chromatographic retention indices of saturated esters. D'Archivio AA; Maggi MA; Ruggieri F J Chromatogr A; 2014 Aug; 1355():269-77. PubMed ID: 24939086 [TBL] [Abstract][Full Text] [Related]
15. The prediction for gas chromatographic retention indices of saturated esters on stationary phases of different polarity. Wang Y; Yao X; Zhang X; Zhang R; Liu M; Hu Z; Fan B Talanta; 2002 Jun; 57(4):641-52. PubMed ID: 18968665 [TBL] [Abstract][Full Text] [Related]
16. Solvation parameter models for retention on perfluorinated and fluorinated low temperature glassy carbon stationary phases in reversed-phase liquid chromatography. Shearer JW; Ding L; Olesik SV J Chromatogr A; 2007 Feb; 1141(1):73-80. PubMed ID: 17188695 [TBL] [Abstract][Full Text] [Related]
17. Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques. Qin LT; Liu SS; Liu HL; Tong J J Chromatogr A; 2009 Jul; 1216(27):5302-12. PubMed ID: 19486989 [TBL] [Abstract][Full Text] [Related]
18. Prediction of retention indices for identification of fatty acid methyl esters. Farkas O; Zenkevich IG; Stout F; Kalivas JH; Héberger K J Chromatogr A; 2008 Jul; 1198-1199():188-95. PubMed ID: 18533170 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography. Aschi M; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2007 Jan; 582(2):235-42. PubMed ID: 17386498 [TBL] [Abstract][Full Text] [Related]
20. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures. Amiri AA; Hemmateenejad B; Safavi A; Sharghi H; Beni AR; Shamsipur M Anal Chim Acta; 2007 Dec; 605(1):11-9. PubMed ID: 18022405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]