These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 19359474)
21. Structural biology of DNA photolyases and cryptochromes. Müller M; Carell T Curr Opin Struct Biol; 2009 Jun; 19(3):277-85. PubMed ID: 19487120 [TBL] [Abstract][Full Text] [Related]
22. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Kleine T; Lockhart P; Batschauer A Plant J; 2003 Jul; 35(1):93-103. PubMed ID: 12834405 [TBL] [Abstract][Full Text] [Related]
23. A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster. Oberpichler I; Pierik AJ; Wesslowski J; Pokorny R; Rosen R; Vugman M; Zhang F; Neubauer O; Ron EZ; Batschauer A; Lamparter T PLoS One; 2011; 6(10):e26775. PubMed ID: 22066008 [TBL] [Abstract][Full Text] [Related]
24. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Kottke T; Batschauer A; Ahmad M; Heberle J Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739 [TBL] [Abstract][Full Text] [Related]
25. Cryptochrome signaling in plants. Li QH; Yang HQ Photochem Photobiol; 2007; 83(1):94-101. PubMed ID: 17002522 [TBL] [Abstract][Full Text] [Related]
26. Photoreduction of the folate cofactor in members of the photolyase family. Moldt J; Pokorny R; Orth C; Linne U; Geisselbrecht Y; Marahiel MA; Essen LO; Batschauer A J Biol Chem; 2009 Aug; 284(32):21670-83. PubMed ID: 19531478 [TBL] [Abstract][Full Text] [Related]
27. DASH-type cryptochromes - solved and open questions. Kiontke S; Göbel T; Brych A; Batschauer A Biol Chem; 2020 Nov; 401(12):1487-1493. PubMed ID: 32663167 [TBL] [Abstract][Full Text] [Related]
28. Structure and function of animal cryptochromes. Oztürk N; Song SH; Ozgür S; Selby CP; Morrison L; Partch C; Zhong D; Sancar A Cold Spring Harb Symp Quant Biol; 2007; 72():119-31. PubMed ID: 18419269 [TBL] [Abstract][Full Text] [Related]
29. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors. Kavakli IH; Baris I; Tardu M; Gül Ş; Öner H; Çal S; Bulut S; Yarparvar D; Berkel Ç; Ustaoğlu P; Aydın C Photochem Photobiol; 2017 Jan; 93(1):93-103. PubMed ID: 28067410 [TBL] [Abstract][Full Text] [Related]
30. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Xing W; Busino L; Hinds TR; Marionni ST; Saifee NH; Bush MF; Pagano M; Zheng N Nature; 2013 Apr; 496(7443):64-8. PubMed ID: 23503662 [TBL] [Abstract][Full Text] [Related]
31. Structure/function analysis of Xenopus cryptochromes 1 and 2 reveals differential nuclear localization mechanisms and functional domains important for interaction with and repression of CLOCK-BMAL1. van der Schalie EA; Conte FE; Marz KE; Green CB Mol Cell Biol; 2007 Mar; 27(6):2120-9. PubMed ID: 17210647 [TBL] [Abstract][Full Text] [Related]
32. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Partch CL; Clarkson MW; Ozgür S; Lee AL; Sancar A Biochemistry; 2005 Mar; 44(10):3795-805. PubMed ID: 15751956 [TBL] [Abstract][Full Text] [Related]
33. Nuclear localization and transcriptional repression are confined to separable domains in the circadian protein CRYPTOCHROME. Zhu H; Conte F; Green CB Curr Biol; 2003 Sep; 13(18):1653-8. PubMed ID: 13678599 [TBL] [Abstract][Full Text] [Related]
34. DNA repair by photolyases. Kavakli IH; Ozturk N; Gul S Adv Protein Chem Struct Biol; 2019; 115():1-19. PubMed ID: 30798929 [TBL] [Abstract][Full Text] [Related]
35. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. Klar T; Pokorny R; Moldt J; Batschauer A; Essen LO J Mol Biol; 2007 Feb; 366(3):954-64. PubMed ID: 17188299 [TBL] [Abstract][Full Text] [Related]
36. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions. Balland V; Byrdin M; Eker AP; Ahmad M; Brettel K J Am Chem Soc; 2009 Jan; 131(2):426-7. PubMed ID: 19140781 [TBL] [Abstract][Full Text] [Related]
37. Purification and characterization of a type III photolyase from Caulobacter crescentus. Oztürk N; Kao YT; Selby CP; Kavakli IH; Partch CL; Zhong D; Sancar A Biochemistry; 2008 Sep; 47(39):10255-61. PubMed ID: 18771290 [TBL] [Abstract][Full Text] [Related]
38. Light-induced conformational change and product release in DNA repair by (6-4) photolyase. Kondoh M; Hitomi K; Yamamoto J; Todo T; Iwai S; Getzoff ED; Terazima M J Am Chem Soc; 2011 Feb; 133(7):2183-91. PubMed ID: 21271694 [TBL] [Abstract][Full Text] [Related]
39. Purification and characterization of DNA photolyases. Sancar GB; Sancar A Methods Enzymol; 2006; 408():121-56. PubMed ID: 16793367 [TBL] [Abstract][Full Text] [Related]
40. The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase. Navarro E; Niemann N; Kock D; Dadaeva T; Gutiérrez G; Engelsdorf T; Kiontke S; Corrochano LM; Batschauer A; Garre V Curr Biol; 2020 Nov; 30(22):4483-4490.e4. PubMed ID: 32946746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]