BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1935990)

  • 1. Multipolar mitosis in procaine-treated polyspermic sea urchin eggs and in eggs fertilized with UV-irradiated spermatozoa with a computer model to simulate the positioning of centrosomes.
    Czihak G; Kojima M; Linhart J; Vogel H
    Eur J Cell Biol; 1991 Aug; 55(2):255-61. PubMed ID: 1935990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material.
    Schatten H; Hueser CN; Chakrabarti A
    Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs.
    Schatten H; Chakrabarti A
    Eur J Cell Biol; 1998 Jan; 75(1):9-20. PubMed ID: 9523150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-1, a mitotic arrester, alters centrosome configurations in fertilized sea urchin eggs.
    Itoh TJ; Schatten H; Schatten G; Mazia D; Kobayashi A; Sato H
    Cell Motil Cytoskeleton; 1990; 16(2):146-54. PubMed ID: 2198112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs.
    Sluder G; Lewis K
    J Exp Zool; 1987 Oct; 244(1):89-100. PubMed ID: 3694143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of maternal centrosomes in unfertilized sea urchin eggs.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1992; 23(1):61-70. PubMed ID: 1356637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. I. The structure and behavior of centrosomes before fusion of the pronuclei.
    Paweletz N; Mazia D; Finze EM
    Eur J Cell Biol; 1987 Oct; 44(2):195-204. PubMed ID: 3691547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of density gradients of astral microtubules at cell surface in cytokinesis of sea urchin eggs.
    Yoshigaki T
    J Theor Biol; 1999 Jan; 196(2):211-24. PubMed ID: 10049616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus.
    Harris PJ
    Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus.
    Hollenbeck PJ; Cande WZ
    Eur J Cell Biol; 1985 May; 37():140-8. PubMed ID: 3896803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins.
    Schatten H
    Cell Motil Cytoskeleton; 1994; 27(1):59-68. PubMed ID: 8194110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Indent" formation and mitotic delay of sea urchin eggs fertilized with X-irradiater sperms.
    Izumi N
    J Radiat Res; 1974 Jun; 15(2):111-3. PubMed ID: 4855477
    [No Abstract]   [Full Text] [Related]  

  • 15. Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster.
    Navara CS; First NL; Schatten G
    Dev Biol; 1994 Mar; 162(1):29-40. PubMed ID: 8125194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cleavage plane will bend when one aster of the mitotic apparatus stops growing in compressed sea urchin eggs.
    Yoshigaki T
    Bull Math Biol; 2002 Jul; 64(4):643-72. PubMed ID: 12216416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitosis in the human embryo: the vital role of the sperm centrosome (centriole).
    Sathananthan AH
    Histol Histopathol; 1997 Jul; 12(3):827-56. PubMed ID: 9225167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization.
    Schatten H; Simerly C; Maul G; Schatten G
    Gamete Res; 1989 Jul; 23(3):309-22. PubMed ID: 2777170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes.
    Sluder G; Rieder CL
    J Cell Biol; 1985 Mar; 100(3):897-903. PubMed ID: 3972900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila parthenogenesis: a tool to decipher centrosomal vs acentrosomal spindle assembly pathways.
    Riparbelli MG; Callaini G
    Exp Cell Res; 2008 Apr; 314(7):1617-25. PubMed ID: 18313666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.