These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19360084)

  • 1. Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods.
    Xie X; Li Y; Liu ZQ; Haruta M; Shen W
    Nature; 2009 Apr; 458(7239):746-9. PubMed ID: 19360084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient CuO/α-MnO
    May YA; Wei S; Yu WZ; Wang WW; Jia CJ
    Langmuir; 2020 Sep; 36(38):11196-11206. PubMed ID: 32787057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CeO2 nanorods-supported transition metal catalysts for CO oxidation.
    Mock SA; Sharp SE; Stoner TR; Radetic MJ; Zell ET; Wang R
    J Colloid Interface Sci; 2016 Mar; 466():261-7. PubMed ID: 26745742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of Co₃O₄@CNT with high catalytic activity for CO oxidation under moisture-rich conditions.
    Kuo CH; Li W; Song W; Luo Z; Poyraz AS; Guo Y; Ma AW; Suib SL; He J
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11311-7. PubMed ID: 24960167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation.
    Gonçalves RV; Wojcieszak R; Wender H; Sato B Dias C; Vono LL; Eberhardt D; Teixeira SR; Rossi LM
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7987-94. PubMed ID: 25816196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient defect engineering strategy to enhance catalytic performances of Co
    Feng B; Shi M; Liu J; Han X; Lan Z; Gu H; Wang X; Sun H; Zhang Q; Li H; Wang Y; Li H
    J Hazard Mater; 2020 Jul; 394():122540. PubMed ID: 32203718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytically active and thermally stable core-shell gold-silica nanorods for CO oxidation.
    Chen Y; Lerch S; Say Z; Tiburski C; Langhammer C; Moth-Poulsen K
    RSC Adv; 2021 Mar; 11(19):11642-11650. PubMed ID: 35423604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand.
    Ziemba M; Schilling C; Ganduglia-Pirovano MV; Hess C
    Acc Chem Res; 2021 Jul; 54(13):2884-2893. PubMed ID: 34137246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The important role of hydroxyl on oxidation catalysis by gold nanoparticles.
    Ide MS; Davis RJ
    Acc Chem Res; 2014 Mar; 47(3):825-33. PubMed ID: 24261465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choice of precipitant and calcination temperature of precursor for synthesis of NiCo
    Trivedi S; Prasad R
    J Environ Sci (China); 2018 Mar; 65():62-71. PubMed ID: 29548412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold on Different Manganese Oxides: Ultra-Low-Temperature CO Oxidation over Colloidal Gold Supported on Bulk-MnO2 Nanomaterials.
    Gu D; Tseng JC; Weidenthaler C; Bongard HJ; Spliethoff B; Schmidt W; Soulimani F; Weckhuysen BM; Schüth F
    J Am Chem Soc; 2016 Aug; 138(30):9572-80. PubMed ID: 27392203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput screening of low temperature CO oxidation catalysts using IR thermography.
    Cypes S; Hagemeyer A; Hogan Z; Lesik A; Streukens G; Volpe AF; Weinberg WH; Yaccato K
    Comb Chem High Throughput Screen; 2007 Jan; 10(1):25-35. PubMed ID: 17266514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design Aspects of Doped CeO
    Polychronopoulou K; AlKhoori AA; Efstathiou AM; Jaoude MA; Damaskinos CM; Baker MA; Almutawa A; Anjum DH; Vasiliades MA; Belabbes A; Vega LF; Zedan AF; Hinder SJ
    ACS Appl Mater Interfaces; 2021 May; 13(19):22391-22415. PubMed ID: 33834768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.