BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 19360485)

  • 1. Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar).
    Davie A; Minghetti M; Migaud H
    Chronobiol Int; 2009 Apr; 26(3):379-95. PubMed ID: 19360485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus.
    Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A
    Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiod regulates clock gene rhythms in the ovine liver.
    Andersson H; Johnston JD; Messager S; Hazlerigg D; Lincoln G
    Gen Comp Endocrinol; 2005 Jul; 142(3):357-63. PubMed ID: 15935162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus.
    Leclerc B; Kang SW; Mauro LJ; Kosonsiriluk S; Chaiseha Y; El Halawani ME
    J Neuroendocrinol; 2010 Feb; 22(2):119-28. PubMed ID: 20002961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).
    Johnston JD; Ebling FJ; Hazlerigg DG
    Eur J Neurosci; 2005 Jun; 21(11):2967-74. PubMed ID: 15978008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of clock gene expression in the avian brain.
    Helfer G; Fidler AE; Vallone D; Foulkes NS; Brandstaetter R
    Chronobiol Int; 2006; 23(1-2):113-27. PubMed ID: 16687285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling.
    Yasuo S; von Gall C; Weaver DR; Korf HW
    Eur J Neurosci; 2008 Dec; 28(12):2443-50. PubMed ID: 19087172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.
    Huang TS; Ruoff P; Fjelldal PG
    Chronobiol Int; 2010 Oct; 27(9-10):1697-714. PubMed ID: 20969518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in atlantic salmon postsmolts.
    Huang TS; Ruoff P; Fjelldal PG
    Chronobiol Int; 2010 Oct; 27(9-10):1715-34. PubMed ID: 20969519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy.
    Fahrenkrug J; Hannibal J; Georg B
    J Neuroendocrinol; 2008 Mar; 20(3):323-9. PubMed ID: 18208549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice.
    Oishi K; Miyazaki K; Uchida D; Ohkura N; Wakabayashi M; Doi R; Matsuda J; Ishida N
    J Mol Cell Cardiol; 2009 Apr; 46(4):545-52. PubMed ID: 19168071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian variations in clock gene expression of human bone marrow CD34+ cells.
    Tsinkalovsky O; Smaaland R; Rosenlund B; Sothern RB; Hirt A; Steine S; Badiee A; Abrahamsen JF; Eiken HG; Laerum OD
    J Biol Rhythms; 2007 Apr; 22(2):140-50. PubMed ID: 17440215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous rhythmicity of Bmal1 and Rev-erb alpha in the hamster pineal gland is not driven by norepinephrine.
    Wongchitrat P; Felder-Schmittbuhl MP; Phansuwan-Pujito P; Pévet P; Simonneaux V
    Eur J Neurosci; 2009 May; 29(10):2009-16. PubMed ID: 19453634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rat circadian clockwork and its photoperiodic entrainment during development.
    Sumová A; Bendová Z; Sládek M; Kováciková Z; El-Hennamy R; Laurinová K; Illnerová H
    Chronobiol Int; 2006; 23(1-2):237-43. PubMed ID: 16687297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the circadian clock within rat colonic epithelial cells.
    Sládek M; Rybová M; Jindráková Z; Zemanová Z; Polidarová L; Mrnka L; O'Neill J; Pácha J; Sumová A
    Gastroenterology; 2007 Oct; 133(4):1240-9. PubMed ID: 17675004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian expression of clock genes and angiotensin II type 1 receptors in suprachiasmatic nuclei of sinoaortic-denervated rats.
    Li H; Sun NL; Wang J; Liu AJ; Su DF
    Acta Pharmacol Sin; 2007 Apr; 28(4):484-92. PubMed ID: 17376287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obesity alters circadian expressions of molecular clock genes in the brainstem.
    Kaneko K; Yamada T; Tsukita S; Takahashi K; Ishigaki Y; Oka Y; Katagiri H
    Brain Res; 2009 Mar; 1263():58-68. PubMed ID: 19401184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration.
    Tournier BB; Birkenstock J; Pévet P; Vuillez P
    Neuroscience; 2009 Apr; 160(1):240-7. PubMed ID: 19409208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the ovine MT1 melatonin receptor promoter: interaction between multiple pituitary transcription factors at different phases of development.
    Johnston JD; Schuster C; Barrett P; Hazlerigg DG
    Mol Cell Endocrinol; 2007 Mar; 268(1-2):59-66. PubMed ID: 17337323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of pineal clock gene and AANAT2 expression in relation to melatonin synthesis in Atlantic salmon (Salmo salar) and European seabass (Dicentrarchus labrax).
    McStay E; Migaud H; Vera LM; Sánchez-Vázquez FJ; Davie A
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Mar; 169():77-89. PubMed ID: 24361868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.