These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19360722)

  • 1. Timing and duration of developmental nicotine exposure contribute to attenuation of the tadpole hypercapnic neuroventilatory response.
    Brundage CM; Taylor BE
    Dev Neurobiol; 2009 Jun; 69(7):451-61. PubMed ID: 19360722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotine elicits a developmentally dependent depression in bullfrog neuroventilatory response to CO(2).
    Brundage CM; Cartagena CM; Potter EA; Taylor BE
    Respir Physiol Neurobiol; 2010 Mar; 170(3):226-35. PubMed ID: 20080209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic, but not acute, ethanol exposure impairs central hypercapnic ventilatory drive in bullfrog tadpoles.
    Taylor BE; Brundage CM
    Respir Physiol Neurobiol; 2013 Feb; 185(3):533-42. PubMed ID: 23174618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic nicotine and ethanol exposure both disrupt central ventilatory responses to hypoxia in bullfrog tadpoles.
    Taylor BE; Brundage CM; McLane LH
    Respir Physiol Neurobiol; 2013 Jul; 187(3):234-43. PubMed ID: 23590824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental exposure to ethanol or nicotine inhibits the hypercapnic ventilatory response in tadpoles.
    Taylor BE; Croll AE; Drucker ML; Wilson AL
    Respir Physiol Neurobiol; 2008 Jan; 160(1):83-90. PubMed ID: 17974508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroplasticity of the central hypercapnic ventilatory response: teratogen-induced impairment and subsequent recovery during development.
    Brundage CM; Taylor BE
    Dev Neurobiol; 2010 Sep; 70(10):726-35. PubMed ID: 20518017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic sensitivity of the developing bullfrog (Rana catesbeiana) does not explain vulnerability to chronic nicotine exposure.
    Brundage CM; Nelson CA; Taylor BE
    Adv Exp Med Biol; 2010; 669():103-7. PubMed ID: 20217330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights in gill/buccal rhythm spiking activity and CO(2) sensitivity in pre- and postmetamorphic tadpoles (Pelophylax ridibundus).
    Quenet B; Straus C; Fiamma MN; Rivals I; Similowski T; Horcholle-Bossavit G
    Respir Physiol Neurobiol; 2014 Jan; 191():26-37. PubMed ID: 24200645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis.
    Reed MD; Iceman KE; Harris MB; Taylor BE
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Nov; 225():7-15. PubMed ID: 29890210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.
    Fournier S; Dubé PL; Kinkead R
    J Exp Biol; 2012 Apr; 215(Pt 7):1144-50. PubMed ID: 22399659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice.
    Robinson DM; Peebles KC; Kwok H; Adams BM; Clarke LL; Woollard GA; Funk GD
    J Physiol; 2002 Feb; 538(Pt 3):957-73. PubMed ID: 11826179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buccal rhythmogenesis and CO
    Reed MD; Iceman KE; Harris MB; Taylor BE
    Respir Physiol Neurobiol; 2019 Oct; 268():103251. PubMed ID: 31279052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental nicotine exposure alters potassium currents in hypoglossal motoneurons of neonatal rat.
    Cholanian M; Wealing J; Levine RB; Fregosi RF
    J Neurophysiol; 2017 Apr; 117(4):1544-1552. PubMed ID: 28148643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenatal to early postnatal nicotine exposure impairs central chemoreception and modifies breathing pattern in mouse neonates: a probable link to sudden infant death syndrome.
    Eugenín J; Otárola M; Bravo E; Coddou C; Cerpa V; Reyes-Parada M; Llona I; von Bernhardi R
    J Neurosci; 2008 Dec; 28(51):13907-17. PubMed ID: 19091979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia.
    Tang S; Machaalani R; Waters KA
    Brain Res; 2008 Sep; 1232():195-205. PubMed ID: 18674523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide.
    Taylor BE; Harris MB; Coates EL; Gdovin MJ; Leiter JC
    J Appl Physiol (1985); 2003 Mar; 94(3):1204-12. PubMed ID: 12571143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinic receptor activation occludes purinergic control of central cardiorespiratory network responses to hypoxia/hypercapnia.
    Huang ZG; Griffioen KJ; Wang X; Dergacheva O; Kamendi H; Gorini C; Mendelowitz D
    J Neurophysiol; 2007 Oct; 98(4):2429-38. PubMed ID: 17699693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.