These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19360795)

  • 1. Bayesian pharmacovigilance signal detection methods revisited in a multiple comparison setting.
    Ahmed I; Haramburu F; Fourrier-Réglat A; Thiessard F; Kreft-Jais C; Miremont-Salamé G; Bégaud B; Tubert-Bitter P
    Stat Med; 2009 Jun; 28(13):1774-92. PubMed ID: 19360795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. False discovery rate estimation for frequentist pharmacovigilance signal detection methods.
    Ahmed I; Dalmasso C; Haramburu F; Thiessard F; Broët P; Tubert-Bitter P
    Biometrics; 2010 Mar; 66(1):301-9. PubMed ID: 19432790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacovigilance data mining with methods based on false discovery rates: a comparative simulation study.
    Ahmed I; Thiessard F; Miremont-Salamé G; Bégaud B; Tubert-Bitter P
    Clin Pharmacol Ther; 2010 Oct; 88(4):492-8. PubMed ID: 20811349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of data mining methodologies using Japanese spontaneous reports.
    Kubota K; Koide D; Hirai T
    Pharmacoepidemiol Drug Saf; 2004 Jun; 13(6):387-94. PubMed ID: 15170768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of measures of disproportionality for signal detection on adverse drug reaction spontaneous reporting database of Guangdong province in China.
    Li C; Xia J; Deng J; Jiang J
    Pharmacoepidemiol Drug Saf; 2008 Jun; 17(6):593-600. PubMed ID: 18432629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-mining analyses of pharmacovigilance signals in relation to relevant comparison drugs.
    Bate A; Lindquist M; Orre R; Edwards IR; Meyboom RH
    Eur J Clin Pharmacol; 2002 Oct; 58(7):483-90. PubMed ID: 12389072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computerized system for signal detection in spontaneous reporting system of Shanghai China.
    Ye X; Fu Z; Wang H; Du W; Wang R; Sun Y; Gao Q; He J
    Pharmacoepidemiol Drug Saf; 2009 Feb; 18(2):154-8. PubMed ID: 19115240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet thresholding with bayesian false discovery rate control.
    Tadesse MG; Ibrahim JG; Vannucci M; Gentleman R
    Biometrics; 2005 Mar; 61(1):25-35. PubMed ID: 15737075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study.
    Ahmed I; Thiessard F; Miremont-Salamé G; Haramburu F; Kreft-Jais C; Bégaud B; Tubert-Bitter P
    Drug Saf; 2012 Jun; 35(6):495-506. PubMed ID: 22612853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer.
    Matsushita Y; Kuroda Y; Niwa S; Sonehara S; Hamada C; Yoshimura I
    Drug Saf; 2007; 30(8):715-26. PubMed ID: 17696584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knowledge based approach for automated signal generation in pharmacovigilance.
    Henegar C; Bousquet C; Lillo-Le Louët A; Degoulet P; Jaulent MC
    Stud Health Technol Inform; 2004; 107(Pt 1):626-30. PubMed ID: 15360888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.
    An L; Fung KY; Krewski D
    J Biopharm Stat; 2010 Sep; 20(5):998-1012. PubMed ID: 20721787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying quantitative methods for detecting new drug safety signals in pharmacovigilance national database.
    Shalviri G; Mohammad K; Majdzadeh R; Gholami K
    Pharmacoepidemiol Drug Saf; 2007 Oct; 16(10):1136-40. PubMed ID: 17705214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A shrinkage-based comparative assessment of observed-to-expected disproportionality measures.
    Gipson G
    Pharmacoepidemiol Drug Saf; 2012 Jun; 21(6):589-96. PubMed ID: 22290739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian hierarchical modeling for detecting safety signals in clinical trials.
    Xia HA; Ma H; Carlin BP
    J Biopharm Stat; 2011 Sep; 21(5):1006-29. PubMed ID: 21830928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple testing on standardized mortality ratios: a Bayesian hierarchical model for FDR estimation.
    Ventrucci M; Scott EM; Cocchi D
    Biostatistics; 2011 Jan; 12(1):51-67. PubMed ID: 20577014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical pharmacovigilance analysis strategies.
    Gould AL
    Pharmacoepidemiol Drug Saf; 2003; 12(7):559-74. PubMed ID: 14558179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian multiple testing procedures for hotspot identification.
    Miranda-Moreno LF; Labbe A; Fu L
    Accid Anal Prev; 2007 Nov; 39(6):1192-201. PubMed ID: 17920843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building an ontology of adverse drug reactions for automated signal generation in pharmacovigilance.
    Henegar C; Bousquet C; Lillo-Le Louët A; Degoulet P; Jaulent MC
    Comput Biol Med; 2006; 36(7-8):748-67. PubMed ID: 16185681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative signal detection using spontaneous ADR reporting.
    Bate A; Evans SJ
    Pharmacoepidemiol Drug Saf; 2009 Jun; 18(6):427-36. PubMed ID: 19358225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.