These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 19360810)

  • 1. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.
    Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ
    J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy.
    Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ
    Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media.
    Sugimoto H; Tano H; Miyake H; Itoh S
    Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family.
    Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C
    J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur K-edge spectroscopic investigation of second coordination sphere effects in oxomolybdenum-thiolates: relationship to molybdenum-cysteine covalency and electron transfer in sulfite oxidase.
    Peariso K; Helton ME; Duesler EN; Shadle SE; Kirk ML
    Inorg Chem; 2007 Feb; 46(4):1259-67. PubMed ID: 17291118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Access to the active site of periplasmic nitrate reductase: insights from site-directed mutagenesis and zinc inhibition studies.
    Dementin S; Arnoux P; Frangioni B; Grosse S; Léger C; Burlat B; Guigliarelli B; Sabaty M; Pignol D
    Biochemistry; 2007 Aug; 46(34):9713-21. PubMed ID: 17676770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of slow substrate binding and release in redox enzymes: theory and application to periplasmic nitrate reductase.
    Bertrand P; Frangioni B; Dementin S; Sabaty M; Arnoux P; Guigliarelli B; Pignol D; Léger C
    J Phys Chem B; 2007 Aug; 111(34):10300-11. PubMed ID: 17676894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity of thiolate ligand and preference of substrate in model reactions of dissimilatory nitrate reductase.
    Majumdar A; Pal K; Sarkar S
    Inorg Chem; 2008 Apr; 47(8):3393-401. PubMed ID: 18335980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum.
    Najmudin S; González PJ; Trincão J; Coelho C; Mukhopadhyay A; Cerqueira NM; Romão CC; Moura I; Moura JJ; Brondino CD; Romão MJ
    J Biol Inorg Chem; 2008 Jun; 13(5):737-53. PubMed ID: 18327621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of nitrate reduction by Desulfovibrio desulfuricans nitrate reductase--a theoretical investigation.
    Leopoldini M; Russo N; Toscano M; Dulak M; Wesolowski TA
    Chemistry; 2006 Mar; 12(9):2532-41. PubMed ID: 16411255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover.
    Fourmond V; Sabaty M; Arnoux P; Bertrand P; Pignol D; Léger C
    J Phys Chem B; 2010 Mar; 114(9):3341-7. PubMed ID: 20163092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site.
    Elliott SJ; Hoke KR; Heffron K; Palak M; Rothery RA; Weiner JH; Armstrong FA
    Biochemistry; 2004 Jan; 43(3):799-807. PubMed ID: 14730985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states.
    Coelho C; González PJ; Moura JG; Moura I; Trincão J; João Romão M
    J Mol Biol; 2011 May; 408(5):932-48. PubMed ID: 21419779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.
    Simpson PJ; Codd R
    Biochem Biophys Res Commun; 2011 Nov; 414(4):783-8. PubMed ID: 22005463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A.
    Bertero MG; Rothery RA; Palak M; Hou C; Lim D; Blasco F; Weiner JH; Strynadka NC
    Nat Struct Biol; 2003 Sep; 10(9):681-7. PubMed ID: 12910261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analogue reaction systems of selenate reductase.
    Wang JJ; Tessier C; Holm RH
    Inorg Chem; 2006 Apr; 45(7):2979-88. PubMed ID: 16562954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer.
    Frangioni B; Arnoux P; Sabaty M; Pignol D; Bertrand P; Guigliarelli B; Léger C
    J Am Chem Soc; 2004 Feb; 126(5):1328-9. PubMed ID: 14759176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization, and biomimetic chemistry of cis-oxosulfidomolybdenum(VI) complexes stabilized by an intramolecular Mo(O)=S...S interaction.
    Laughlin LJ; Eagle AA; George GN; Tiekink ER; Young CG
    Inorg Chem; 2007 Feb; 46(3):939-48. PubMed ID: 17257038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center.
    Hoke KR; Cobb N; Armstrong FA; Hille R
    Biochemistry; 2004 Feb; 43(6):1667-74. PubMed ID: 14769044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.