These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19360882)

  • 1. Lamination for subdermal implant fixation.
    Hori BD; Petrell RJ; Trites AW; Godbey T
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):17-25. PubMed ID: 19360882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrous tissue ingrowth and attachment to porous tantalum.
    Hacking SA; Bobyn JD; Toh K; Tanzer M; Krygier JJ
    J Biomed Mater Res; 2000 Dec; 52(4):631-8. PubMed ID: 11033545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical effects of e-PTFE implant structure on soft tissue implantation stability: a study in the porcine model.
    Greene D; Pruitt L; Maas CS
    Laryngoscope; 1997 Jul; 107(7):957-62. PubMed ID: 9217139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study.
    Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y
    Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histologic observation of soft tissue responses to implanted, multifaceted particles and discs of hydroxylapatite.
    Drobeck HP; Rothstein SS; Gumaer KI; Sherer AD; Slighter RG
    J Oral Maxillofac Surg; 1984 Mar; 42(3):143-9. PubMed ID: 6321707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model.
    Jordan DR; Brownstein S; Dorey M; Yuen VH; Gilberg S
    Ophthalmic Plast Reconstr Surg; 2004 Mar; 20(2):136-43. PubMed ID: 15083083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue compatibility and stability of a new zirconia ceramic in vivo.
    Ichikawa Y; Akagawa Y; Nikai H; Tsuru H
    J Prosthet Dent; 1992 Aug; 68(2):322-6. PubMed ID: 1501183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test.
    Rønold HJ; Lyngstadaas SP; Ellingsen JE
    Biomaterials; 2003 Nov; 24(25):4559-64. PubMed ID: 12950998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy.
    Choi S; Lee SJ; Shin JH; Cheong Y; Lee HJ; Paek JH; Kim JS; Jin KH; Park HK
    Scanning; 2011; 33(4):211-21. PubMed ID: 21538394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of fixation of metal implants coated by melt-sprayed alumina--experiments in rabbit.
    Fuji T; Fujiwara K; Hirata Y; Hijikata T; Saito S; Ono K
    Med J Osaka Univ; 1991 Mar; 40(1-4):19-28. PubMed ID: 1369652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth.
    Bobyn JD; Pilliar RM; Cameron HU; Weatherly GC; Kent GM
    Clin Orthop Relat Res; 1980 Jun; (149):291-8. PubMed ID: 7408314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical attachment of soft fibrous tissues to implants by using mesh structures.
    Asoda S; Arita T; Koshitomae H; Takakuda K
    Clin Oral Implants Res; 2008 Nov; 19(11):1171-7. PubMed ID: 18983321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.
    Peng W; Xu L; You J; Fang L; Zhang Q
    Biomed Eng Online; 2016 Jul; 15(1):85. PubMed ID: 27439427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of non-contacting optical methods to measure wear and surface roughness in ceramic total disc replacements.
    Green NC; Bowen J; Hukins DW; Shepherd DE
    Proc Inst Mech Eng H; 2015 Mar; 229(3):245-54. PubMed ID: 25834000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic scleral reinforcement materials. III. Changes in surface and bulk physical properties.
    Jacob JT; Lin JJ; Mikal SP
    J Biomed Mater Res; 1997 Dec; 37(4):525-33. PubMed ID: 9407301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone ingrowth into porous silicon nitride.
    Anderson MC; Olsen R
    J Biomed Mater Res A; 2010 Mar; 92(4):1598-605. PubMed ID: 19437439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Tissue reaction after implantation of ceramic biomaterials with introduced electrokinetic zeta potential on surface].
    Lewandowski R; Rutowski R; Staniszewska-Kuś J; Pielka S; Wnukiewicz B
    Polim Med; 2004; 34(1):13-25. PubMed ID: 15222224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of bone-bonding ability of RGD-coated porous implant using layer-by-layer electrostatic self-assembly.
    Yang GL; He FM; Yang XF; Wang XX; Zhao SF
    J Biomed Mater Res A; 2009 Jul; 90(1):175-85. PubMed ID: 18491389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue response to implanted ceramic-coated titanium alloys in rats.
    Satomi K; Akagawa Y; Nikai H; Tsuru H
    J Oral Rehabil; 1988 Jul; 15(4):339-45. PubMed ID: 3171755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation into the role of core porcelain thickness and lamination in determining the flexural strength of In-Ceram dental materials.
    Alshehri SA
    J Prosthodont; 2011 Jun; 20(4):261-6. PubMed ID: 21535292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.