These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19360957)

  • 1. Drop impact on porous superhydrophobic polymer surfaces.
    Rioboo R; Voué M; Vaillant A; De Coninck J
    Langmuir; 2008 Dec; 24(24):14074-7. PubMed ID: 19360957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drop impact on inclined superhydrophobic surfaces.
    LeClear S; LeClear J; Abhijeet ; Park KC; Choi W
    J Colloid Interface Sci; 2016 Jan; 461():114-121. PubMed ID: 26397917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition between superhydrophobic states on rough surfaces.
    Patankar NA
    Langmuir; 2004 Aug; 20(17):7097-102. PubMed ID: 15301493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drop impact and rebound dynamics on an inclined superhydrophobic surface.
    Yeong YH; Burton J; Loth E; Bayer IS
    Langmuir; 2014 Oct; 30(40):12027-38. PubMed ID: 25216298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobic aluminum surfaces by deposition of micelles of fluorinated block copolymers.
    Desbief S; Grignard B; Detrembleur C; Rioboo R; Vaillant A; Seveno D; Voué M; De Coninck J; Jonas AM; Jérôme C; Damman P; Lazzaroni R
    Langmuir; 2010 Feb; 26(3):2057-67. PubMed ID: 19761260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hysteresis with regard to Cassie and Wenzel states on superhydrophobic surfaces.
    Patankar NA
    Langmuir; 2010 May; 26(10):7498-503. PubMed ID: 20085371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods.
    Tuberquia JC; Song WS; Jennings GK
    Anal Chem; 2011 Aug; 83(16):6184-90. PubMed ID: 21696148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drop impact upon micro- and nanostructured superhydrophobic surfaces.
    Tsai P; Pacheco S; Pirat C; Lefferts L; Lohse D
    Langmuir; 2009 Oct; 25(20):12293-8. PubMed ID: 19821629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.