BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 19361285)

  • 21. Discovery of a Novel Series of Potent, Selective, Orally Available, and Brain-Penetrable C1s Inhibitors for Modulation of the Complement Pathway.
    Ikeda Z; Kamei T; Sasaki Y; Reynolds M; Sakai N; Yoshikawa M; Tawada M; Morishita N; Dougan DR; Chen CH; Levin I; Zou H; Kuno M; Arimura N; Kikukawa Y; Kondo M; Tohyama K; Sato K
    J Med Chem; 2023 May; 66(9):6354-6371. PubMed ID: 37120845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the lys628 (192) residue of the complement protease, c1s, in interacting with Peptide and protein substrates.
    Wijeyewickrema LC; Duncan RC; Pike RN
    Front Immunol; 2014; 5():444. PubMed ID: 25278939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
    Paramesvaran J; Hibbert EG; Russell AJ; Dalby PA
    Protein Eng Des Sel; 2009 Jul; 22(7):401-11. PubMed ID: 19502357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate-guided design of a potent and selective kallikrein-related peptidase inhibitor for kallikrein 4.
    Swedberg JE; Nigon LV; Reid JC; de Veer SJ; Walpole CM; Stephens CR; Walsh TP; Takayama TK; Hooper JD; Clements JA; Buckle AM; Harris JM
    Chem Biol; 2009 Jun; 16(6):633-43. PubMed ID: 19549601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unconjugated bilirubin inhibits C1 esterase activity.
    Arriaga SM; Basiglio CL; Mottino AD; Almará AM
    Clin Biochem; 2009 Jun; 42(9):919-21. PubMed ID: 19150444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based analysis of inhibitor binding to Ht-d.
    Botos I; Scapozza L; Shannon JD; Fox JW; Meyer EF
    Acta Crystallogr D Biol Crystallogr; 1995 Jul; 51(Pt 4):597-604. PubMed ID: 15299848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site.
    Yu L; Yu PS; Yee Yen Mui E; McKelvie JC; Pham TP; Yap YW; Wong WQ; Wu J; Deng W; Orner BP
    Bioorg Med Chem; 2009 Jul; 17(13):4825-32. PubMed ID: 19447041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subsite substrate specificity of midgut insect chymotrypsins.
    Sato PM; Lopes AR; Juliano L; Juliano MA; Terra WR
    Insect Biochem Mol Biol; 2008 Jun; 38(6):628-33. PubMed ID: 18510974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural mechanisms of inactivation in scabies mite serine protease paralogues.
    Fischer K; Langendorf CG; Irving JA; Reynolds S; Willis C; Beckham S; Law RH; Yang S; Bashtannyk-Puhalovich TA; McGowan S; Whisstock JC; Pike RN; Kemp DJ; Buckle AM
    J Mol Biol; 2009 Jul; 390(4):635-45. PubMed ID: 19427318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of recombinant caspase specificity by competitive substrates.
    Benkova B; Lozanov V; Ivanov IP; Mitev V
    Anal Biochem; 2009 Nov; 394(1):68-74. PubMed ID: 19595985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin.
    Baum B; Muley L; Heine A; Smolinski M; Hangauer D; Klebe G
    J Mol Biol; 2009 Aug; 391(3):552-64. PubMed ID: 19520086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A library of fluorescent peptides for exploring the substrate specificities of prolyl isomerases.
    Zoldák G; Aumüller T; Lücke C; Hritz J; Oostenbrink C; Fischer G; Schmid FX
    Biochemistry; 2009 Nov; 48(43):10423-36. PubMed ID: 19785464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation loop 3 and the 170 loop interact in the active conformation of coagulation factor VIIa.
    Persson E; Olsen OH
    FEBS J; 2009 Jun; 276(11):3099-109. PubMed ID: 19490111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complement component C2, inhibiting a latent serine protease in the classical pathway of complement activation.
    Halili MA; Ruiz-Gómez G; Le GT; Abbenante G; Fairlie DP
    Biochemistry; 2009 Sep; 48(35):8466-72. PubMed ID: 19642650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of protein impurities and site-specific modifications using peptide mapping with liquid chromatography and data independent acquisition mass spectrometry.
    Xie H; Gilar M; Gebler JC
    Anal Chem; 2009 Jul; 81(14):5699-708. PubMed ID: 19518054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions.
    Schillinger C; Boisguerin P; Krause G
    Bioinformatics; 2009 Jul; 25(13):1632-9. PubMed ID: 19376827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition.
    Lai H; Feng M; Roxas-Duncan V; Dakshanamurthy S; Smith LA; Yang DC
    Arch Biochem Biophys; 2009 Nov; 491(1-2):75-84. PubMed ID: 19772855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.
    Su XC; Ozawa K; Yagi H; Lim SP; Wen D; Ekonomiuk D; Huang D; Keller TH; Sonntag S; Caflisch A; Vasudevan SG; Otting G
    FEBS J; 2009 Aug; 276(15):4244-55. PubMed ID: 19583774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA.
    Pollet A; Sansen S; Raedschelders G; Gebruers K; Rabijns A; Delcour JA; Courtin CM
    FEBS J; 2009 Jul; 276(14):3916-27. PubMed ID: 19769747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.