These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19361344)

  • 1. EFICAz2: enzyme function inference by a combined approach enhanced by machine learning.
    Arakaki AK; Huang Y; Skolnick J
    BMC Bioinformatics; 2009 Apr; 10():107. PubMed ID: 19361344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference.
    Tian W; Arakaki AK; Skolnick J
    Nucleic Acids Res; 2004; 32(21):6226-39. PubMed ID: 15576349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes.
    Kumar N; Skolnick J
    Bioinformatics; 2012 Oct; 28(20):2687-8. PubMed ID: 22923291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High precision multi-genome scale reannotation of enzyme function by EFICAz.
    Arakaki AK; Tian W; Skolnick J
    BMC Genomics; 2006 Dec; 7():315. PubMed ID: 17166279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature.
    Dalkiran A; Rifaioglu AS; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T
    BMC Bioinformatics; 2018 Sep; 19(1):334. PubMed ID: 30241466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature.
    Wang YC; Wang XB; Yang ZX; Deng NY
    Protein Pept Lett; 2010 Nov; 17(11):1441-9. PubMed ID: 20666729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function.
    Holliday GL; Brown SD; Mischel D; Polacco BJ; Babbitt PC
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32449511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BrEPS: a flexible and automatic protocol to compute enzyme-specific sequence profiles for functional annotation.
    Bannert C; Welfle A; Aus dem Spring C; Schomburg D
    BMC Bioinformatics; 2010 Dec; 11():589. PubMed ID: 21122127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction.
    Kauffman C; Karypis G
    Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECS: an automatic enzyme classifier based on functional domain composition.
    Lu L; Qian Z; Cai YD; Li Y
    Comput Biol Chem; 2007 Jun; 31(3):226-32. PubMed ID: 17500036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSiFR: an integrated resource for prediction of protein structure and function.
    Pandit SB; Brylinski M; Zhou H; Gao M; Arakaki AK; Skolnick J
    Bioinformatics; 2010 Mar; 26(5):687-8. PubMed ID: 20080513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach.
    Han LY; Cai CZ; Ji ZL; Cao ZW; Cui J; Chen YZ
    Nucleic Acids Res; 2004; 32(21):6437-44. PubMed ID: 15585667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EnzML: multi-label prediction of enzyme classes using InterPro signatures.
    De Ferrari L; Aitken S; van Hemert J; Goryanin I
    BMC Bioinformatics; 2012 Apr; 13():61. PubMed ID: 22533924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machine prediction of enzyme function with conjoint triad feature and hierarchical context.
    Wang YC; Wang Y; Yang ZX; Deng NY
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S6. PubMed ID: 21689481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families.
    Röttig M; Rausch C; Kohlbacher O
    PLoS Comput Biol; 2010 Jan; 6(1):e1000636. PubMed ID: 20072606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.
    Nguyen NN; Srihari S; Leong HW; Chong KF
    J Bioinform Comput Biol; 2015 Oct; 13(5):1543003. PubMed ID: 26542446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds.
    Mu F; Unkefer CJ; Unkefer PJ; Hlavacek WS
    Bioinformatics; 2011 Jun; 27(11):1537-45. PubMed ID: 21478194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved enzyme annotation with EC-specific cutoffs using DETECT v2.
    Nursimulu N; Xu LL; Wasmuth JD; Krukov I; Parkinson J
    Bioinformatics; 2018 Oct; 34(19):3393-3395. PubMed ID: 29722785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.