These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 19361693)

  • 1. Chapter 7. Axis formation and the rapid evolutionary transformation of larval form.
    Raff RA; Snoke Smith M
    Curr Top Dev Biol; 2009; 86():163-90. PubMed ID: 19361693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Turner FR; Raff RA
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):609-22. PubMed ID: 18702078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of direct-developing larvae: selection vs loss.
    Smith MS; Zigler KS; Raff RA
    Bioessays; 2007 Jun; 29(6):566-71. PubMed ID: 17508402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-option of an oral-aboral patterning mechanism to control left-right differentiation: the direct-developing sea urchin Heliocidaris erythrogramma is sinistralized, not ventralized, by NiCl2.
    Minsuk SB; Raff RA
    Evol Dev; 2005; 7(4):289-300. PubMed ID: 15982366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and experimental change in egg volume, heterochrony of larval body and juvenile rudiment, and evolutionary reversibility in pluteus form.
    Bertram DF; Phillips NE; Strathmann RR
    Evol Dev; 2009; 11(6):728-39. PubMed ID: 19878294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development.
    Heyland A; Hodin J
    Evolution; 2004 Mar; 58(3):524-38. PubMed ID: 15119437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolutionary ecology of offspring size in marine invertebrates.
    Marshall DJ; Keough MJ
    Adv Mar Biol; 2007; 53():1-60. PubMed ID: 17936135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larval ectoderm, organizational homology, and the origins of evolutionary novelty.
    Love AC; Raff RA
    J Exp Zool B Mol Dev Evol; 2006 Jan; 306(1):18-34. PubMed ID: 16075457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct-developing sea urchins and the evolutionary reorganization of early development.
    Raff RA
    Bioessays; 1992 Apr; 14(4):211-8. PubMed ID: 1596270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC; Lee AE; Andrews ME; Raff RA
    Evol Dev; 2008; 10(1):74-88. PubMed ID: 18184359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea).
    Heyland A; Reitzel AM; Hodin J
    Evol Dev; 2004; 6(6):382-92. PubMed ID: 15509220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm.
    Love AC; Andrews ME; Raff RA
    Evol Dev; 2007; 9(1):51-68. PubMed ID: 17227366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The active evolutionary lives of echinoderm larvae.
    Raff RA; Byrne M
    Heredity (Edinb); 2006 Sep; 97(3):244-52. PubMed ID: 16850040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Who came first--larvae or adults? origins of bilaterian metazoan larvae.
    Sly BJ; Snoke MS; Raff RA
    Int J Dev Biol; 2003; 47(7-8):623-32. PubMed ID: 14756338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.
    Emlet RB
    Dev Biol; 1995 Feb; 167(2):405-15. PubMed ID: 7875367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological evolution in sea urchin development: hybrids provide insights into the pace of evolution.
    Byrne M; Voltzow J
    Bioessays; 2004 Apr; 26(4):343-7. PubMed ID: 15057932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building divergent body plans with similar genetic pathways.
    Swalla BJ
    Heredity (Edinb); 2006 Sep; 97(3):235-43. PubMed ID: 16868565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
    Bradham CA; McClay DR
    Development; 2006 Jan; 133(1):21-32. PubMed ID: 16319119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.