BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1936172)

  • 1. Analysis of concurrent glucose consumption by the hexose monophosphate shunt, glycolysis, and the polyol pathway in the crystalline lens.
    Cheng HM; Xiong J; Tanaka G; Chang C; Asterlin AA; Aguayo JB
    Exp Eye Res; 1991 Sep; 53(3):363-6. PubMed ID: 1936172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyol pathway activity in streptozotocin-diabetic rat lens.
    Cheng HM; Hirose K; Xiong H; González RG
    Exp Eye Res; 1989 Jul; 49(1):87-92. PubMed ID: 2759193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton NMR spectroscopy of glucose consumption by cultured lens epithelial cells.
    Cheng HM; Aguiar E; Ford JJ; Kelleher P; Lam DM
    J Ocul Pharmacol; 1986; 2(4):319-24. PubMed ID: 3503116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic assessment of hexose monophosphate shunt activity in the intact rabbit lens by proton NMR spectroscopy.
    Willis JA; Williams WF; Schleich T
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1068-73. PubMed ID: 3753487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose monophosphate shunt measurement in cultured cells with [1-13C]glucose: correction for endogenous carbon sources using [6-13C] glucose.
    Kingsley-Hickman PB; Ross BD; Krick T
    Anal Biochem; 1990 Mar; 185(2):235-7. PubMed ID: 2339780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glutathione deprivation on lens metabolism.
    Cheng HM; von Saltza I; González RG; Ansari NH; Srivastiva SK
    Exp Eye Res; 1984 Sep; 39(3):355-64. PubMed ID: 6094226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of polyol pathway activity in the ocular lens.
    González RG; Barnett P; Aguayo J; Cheng HM; Chylack LT
    Diabetes; 1984 Feb; 33(2):196-9. PubMed ID: 6692996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorbitol/fructose metabolism in the lens.
    Cheng HM; González RG; Barnett PA; Aguayo JB; Wolfe J; Chylack LT
    Exp Eye Res; 1985 Feb; 40(2):223-9. PubMed ID: 3979463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance studies of sugar metabolism in the human infant lens.
    Cheng HM; Xiong J; Hirose S; Igarashi H; Hirose T
    Ophthalmic Res; 1996; 28 Suppl 2():5-10. PubMed ID: 8883083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The utilization of 13C and 31P nuclear magnetic resonance spectroscopy in the study of the sorbitol pathway and aldose reductase inhibition in intact rabbit lenses.
    Williams WF; Odom JD
    Exp Eye Res; 1987 Jun; 44(6):717-30. PubMed ID: 3115803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of glucose into glutamate via the hexose monophosphate shunt and its inhibition by 6-aminonicotinamide in rat brain in vivo.
    Gaitonde MK; Jones J; Evans G
    Proc R Soc Lond B Biol Sci; 1987 Jun; 231(1262):71-90. PubMed ID: 2888118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of prolonged elevated glucose levels on the phosphate metabolism of the rabbit lens in perfused organ culture.
    Willis JA; Schleich T
    Exp Eye Res; 1986 Sep; 43(3):329-41. PubMed ID: 3780877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas chromatographic-mass spectrometric analysis of hexose monophosphate shunt activity in cultured cells.
    Mitchell SL; Ross BD; Krick T; Garwood M
    Biochem Biophys Res Commun; 1989 Jan; 158(2):474-9. PubMed ID: 2916995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P-nuclear magnetic resonance evidence of an activated hexose-monophosphate shunt in hyperglycemic rat lenses in vivo.
    Szwergold BS; Lal S; Taylor AH; Kappler F; Su B; Brown TR
    Diabetes; 1995 Jul; 44(7):810-5. PubMed ID: 7789649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of diabetic cataractogenesis using chemical-shift nuclear magnetic resonance microscopy.
    Cheng HM; Aguayo JB; Moore GJ; Mattingly M
    Magn Reson Med; 1991 Jan; 17(1):62-8. PubMed ID: 2067407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ; Secchi EF; Lee JW; Sato S; Kubo E; Akagi Y; Kador PF
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose uptake, hexose monophosphate shunt activity, and oxygen consumption in cultured human retinal pigment epithelial cells.
    Miceli MV; Newsome DA; Schriver GW
    Invest Ophthalmol Vis Sci; 1990 Feb; 31(2):277-83. PubMed ID: 2303329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The study of diabetic cataractogenesis in the intact rabbit lens by deuterium NMR spectroscopy.
    Aguayo JB; McLennan IJ; Aguiar E; Cheng HM
    Biochem Biophys Res Commun; 1987 Jan; 142(2):359-66. PubMed ID: 3101691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C-nuclear magnetic resonance studies of sugar cataractogenesis in the single intact rabbit lens.
    González RG; Willis J; Aguayo J; Campbell P; Chylack LT; Schleich T
    Invest Ophthalmol Vis Sci; 1982 Jun; 22(6):808-11. PubMed ID: 7076426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.