BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 19361851)

  • 1. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation.
    Doksani Y; Bermejo R; Fiorani S; Haber JE; Foiani M
    Cell; 2009 Apr; 137(2):247-58. PubMed ID: 19361851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription.
    Brambati A; Zardoni L; Achar YJ; Piccini D; Galanti L; Colosio A; Foiani M; Liberi G
    Nucleic Acids Res; 2018 Feb; 46(3):1227-1239. PubMed ID: 29059325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.
    Nakada D; Hirano Y; Sugimoto K
    Mol Cell Biol; 2004 Nov; 24(22):10016-25. PubMed ID: 15509802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations.
    Lee K; Zhang Y; Lee SE
    Nature; 2008 Jul; 454(7203):543-6. PubMed ID: 18650924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tel1/ATM prevents degradation of replication forks that reverse after topoisomerase poisoning.
    Menin L; Ursich S; Trovesi C; Zellweger R; Lopes M; Longhese MP; Clerici M
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29739811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins.
    Lisby M; Barlow JH; Burgess RC; Rothstein R
    Cell; 2004 Sep; 118(6):699-713. PubMed ID: 15369670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATR/Mec1: coordinating fork stability and repair.
    Friedel AM; Pike BL; Gasser SM
    Curr Opin Cell Biol; 2009 Apr; 21(2):237-44. PubMed ID: 19230642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication.
    Signon L
    G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells.
    Cotta-Ramusino C; Fachinetti D; Lucca C; Doksani Y; Lopes M; Sogo J; Foiani M
    Mol Cell; 2005 Jan; 17(1):153-9. PubMed ID: 15629726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae.
    Takata H; Tanaka Y; Matsuura A
    Mol Cell; 2005 Feb; 17(4):573-83. PubMed ID: 15721260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages.
    Lee MS; Joo JW; Choi H; Kang HA; Kim K
    J Microbiol Biotechnol; 2020 Mar; 30(3):469-475. PubMed ID: 31847509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics.
    Frattini C; Villa-Hernández S; Pellicanò G; Jossen R; Katou Y; Shirahige K; Bermejo R
    Mol Cell; 2017 Nov; 68(4):758-772.e4. PubMed ID: 29129641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair.
    McGee JS; Phillips JA; Chan A; Sabourin M; Paeschke K; Zakian VA
    Nat Struct Mol Biol; 2010 Dec; 17(12):1438-45. PubMed ID: 21057524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response.
    Ohouo PY; Bastos de Oliveira FM; Almeida BS; Smolka MB
    Mol Cell; 2010 Jul; 39(2):300-6. PubMed ID: 20670896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends.
    Hirano Y; Sugimoto K
    Mol Biol Cell; 2007 Jun; 18(6):2026-36. PubMed ID: 17377065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The S-phase checkpoint: targeting the replication fork.
    Segurado M; Tercero JA
    Biol Cell; 2009 Aug; 101(11):617-27. PubMed ID: 19686094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks.
    Gobbini E; Cesena D; Galbiati A; Lockhart A; Longhese MP
    DNA Repair (Amst); 2013 Oct; 12(10):791-9. PubMed ID: 23953933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of MRN activity by a telomere protein motif.
    Khayat F; Cannavo E; Alshmery M; Foster WR; Chahwan C; Maddalena M; Smith C; Oliver AW; Watson AT; Carr AM; Cejka P; Bianchi A
    Nat Commun; 2021 Jun; 12(1):3856. PubMed ID: 34158470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.