BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 19361885)

  • 1. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate.
    Henderson TH; Mayer KU; Parker BL; Al TA
    J Contam Hydrol; 2009 May; 106(3-4):195-211. PubMed ID: 19361885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based evaluation of controlled-release systems in the remediation of dissolved plumes in groundwater.
    Lee ES; Liu G; Schwartz FW; Kim Y; Ibaraki M
    Chemosphere; 2008 May; 72(2):165-73. PubMed ID: 18377947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.
    Lee BS; Kim JH; Lee KC; Kim YB; Schwartz FW; Lee ES; Woo NC; Lee MK
    Chemosphere; 2009 Feb; 74(6):745-50. PubMed ID: 19118857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials.
    Hønning J; Broholm MM; Bjerg PL
    J Contam Hydrol; 2007 Mar; 90(3-4):221-39. PubMed ID: 17140696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of injection system design on ISCO performance with permanganate--mathematical modeling results.
    Cha KY; Borden RC
    J Contam Hydrol; 2012 Feb; 128(1-4):33-46. PubMed ID: 22192343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.
    Lee ES; Schwartz FW
    Chemosphere; 2007 Feb; 66(11):2058-66. PubMed ID: 17140635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal mobility during in situ chemical oxidation of TCE by KMnO4.
    Al TA; Banks V; Loomer D; Parker BL; Ulrich Mayer K
    J Contam Hydrol; 2006 Nov; 88(1-2):137-52. PubMed ID: 16876907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: a pilot-scale flow-tank study.
    Lee ES; Woo NC; Schwartz FW; Lee BS; Lee KC; Woo MH; Kim JH; Kim HK
    Chemosphere; 2008 Mar; 71(5):902-10. PubMed ID: 18207217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration rebound following in situ chemical oxidation in fractured clay.
    Mundle K; Reynolds DA; West MR; Kueper BH
    Ground Water; 2007; 45(6):692-702. PubMed ID: 17973747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones.
    Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF
    J Contam Hydrol; 2004 Oct; 74(1-4):105-31. PubMed ID: 15358489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Follow-up study on the effects on well chemistry from biological and chemical remediation of chlorinated solvents.
    Scott D; Apblett A; Materer NF
    J Environ Monit; 2011 Sep; 13(9):2521-6. PubMed ID: 21769369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of antibiotics during water treatment with potassium permanganate: reaction pathways and deactivation.
    Hu L; Stemig AM; Wammer KH; Strathmann TJ
    Environ Sci Technol; 2011 Apr; 45(8):3635-42. PubMed ID: 21417319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of flow and contaminant transport in coupled stream-aquifer systems.
    Hussein M; Schwartz FW
    J Contam Hydrol; 2003 Aug; 65(1-2):41-64. PubMed ID: 12855200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers.
    Li L; Benson CH; Lawson EM
    J Contam Hydrol; 2006 Feb; 83(1-2):89-121. PubMed ID: 16386821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone.
    Verginelli I; Capobianco O; Hartog N; Baciocchi R
    J Contam Hydrol; 2017 Feb; 197():50-61. PubMed ID: 28109630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.