These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 19361989)

  • 1. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability.
    Waring MJ
    Bioorg Med Chem Lett; 2009 May; 19(10):2844-51. PubMed ID: 19361989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the Golden Triangle to optimize clearance and oral absorption.
    Johnson TW; Dress KR; Edwards M
    Bioorg Med Chem Lett; 2009 Oct; 19(19):5560-4. PubMed ID: 19720530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presentation of a structurally diverse and commercially available drug data set for correlation and benchmarking studies.
    Sköld C; Winiwarter S; Wernevik J; Bergström F; Engström L; Allen R; Box K; Comer J; Mole J; Hallberg A; Lennernäs H; Lundstedt T; Ungell AL; Karlén A
    J Med Chem; 2006 Nov; 49(23):6660-71. PubMed ID: 17154497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight.
    Camenisch G; Alsenz J; van de Waterbeemd H; Folkers G
    Eur J Pharm Sci; 1998 Oct; 6(4):317-24. PubMed ID: 9795088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR study on permeability of hydrophobic compounds with artificial membranes.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2007 Jun; 15(11):3756-67. PubMed ID: 17418579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates.
    Masungi C; Mensch J; Van Dijck A; Borremans C; Willems B; Mackie C; Noppe M; Brewster ME
    Pharmazie; 2008 Mar; 63(3):194-9. PubMed ID: 18444507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting permeability coefficient in ADMET evaluation by using different membranes-interaction QSAR.
    Liu J; Li Y; Pan D; Hopfinger AJ
    Int J Pharm; 2005 Nov; 304(1-2):115-23. PubMed ID: 16182478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of vesicle electrokinetic chromatography as an in vitro assay for the estimation of intestinal permeability of pharmaceutical drug candidates.
    Pascoe RJ; Masucci JA; Foley JP
    Electrophoresis; 2006 Feb; 27(4):793-804. PubMed ID: 16411277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment-based drug design: how big is too big?
    Hajduk PJ
    J Med Chem; 2006 Nov; 49(24):6972-6. PubMed ID: 17125250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigation of passive intestinal membrane permeability using Monte Carlo method to generate drug-like molecule population.
    Sugano K
    Int J Pharm; 2009 May; 373(1-2):55-61. PubMed ID: 19429288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental modelling of drug membrane permeability by capillary electrophoresis using liposomes, micelles and microemulsions.
    Ornskov E; Gottfries J; Erickson M; Folestad S
    J Pharm Pharmacol; 2005 Apr; 57(4):435-42. PubMed ID: 15831203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast monolithic micellar liquid chromatography: an alternative drug permeability assessing method for high-throughput screening.
    Detroyer A; Stokbroekx S; Bohets H; Lorreyne W; Timmerman P; Verboven P; Massart DL; Vander Heyden Y
    Anal Chem; 2004 Dec; 76(24):7304-9. PubMed ID: 15595873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topochemical models for the prediction of permeability through blood-brain barrier.
    Dureja H; Madan AK
    Int J Pharm; 2006 Oct; 323(1-2):27-33. PubMed ID: 16815653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an in silico model for predicting efflux substrates in Caco-2 cells.
    Zhang L; Balimane PV; Johnson SR; Chong S
    Int J Pharm; 2007 Oct; 343(1-2):98-105. PubMed ID: 17583455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of drug metabolism for prediction of intestinal permeability (dagger).
    Chen ML; Yu L
    Mol Pharm; 2009; 6(1):74-81. PubMed ID: 19132929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs.
    Perola E
    J Med Chem; 2010 Apr; 53(7):2986-97. PubMed ID: 20235539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of lipophilicity in drug discovery and design.
    Arnott JA; Planey SL
    Expert Opin Drug Discov; 2012 Oct; 7(10):863-75. PubMed ID: 22992175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical calculation and prediction of Caco-2 cell permeability using MolSurf parametrization and PLS statistics.
    Norinder U; Osterberg T; Artursson P
    Pharm Res; 1997 Dec; 14(12):1786-91. PubMed ID: 9453069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography.
    Guiffant D; Tribouillard D; Gug F; Galons H; Meijer L; Blondel M; Bach S
    Biotechnol J; 2007 Jan; 2(1):68-75. PubMed ID: 17225251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voyages to the (un)known: adaptive design of bioactive compounds.
    Schneider G; Hartenfeller M; Reutlinger M; Tanrikulu Y; Proschak E; Schneider P
    Trends Biotechnol; 2009 Jan; 27(1):18-26. PubMed ID: 19004513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.