BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19362096)

  • 61. Retroviral integrases promote fraying of viral DNA ends.
    Katz RA; Merkel G; Andrake MD; Roder H; Skalka AM
    J Biol Chem; 2011 Jul; 286(29):25710-8. PubMed ID: 21622554
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors.
    Pandey KK; Bera S; Vora AC; Grandgenett DP
    Biochemistry; 2010 Sep; 49(38):8376-87. PubMed ID: 20799722
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of subterminal viral DNA nucleotides on differential susceptibility to cleavage by human immunodeficiency virus type 1 and visna virus integrases.
    Katzman M; Sudol M
    J Virol; 1996 Dec; 70(12):9069-73. PubMed ID: 8971046
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Substrate sequence selection by retroviral integrase.
    Zhou H; Rainey GJ; Wong SK; Coffin JM
    J Virol; 2001 Feb; 75(3):1359-70. PubMed ID: 11152509
    [TBL] [Abstract][Full Text] [Related]  

  • 65. HIV-1 Integrase Assembles Multiple Species of Stable Synaptic Complex Intasomes That Are Active for Concerted DNA Integration In vitro.
    Li M; Yang R; Chen X; Wang H; Ghirlando R; Dimitriadis EK; Craigie R
    J Mol Biol; 2024 May; 436(10):168557. PubMed ID: 38582148
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Displacement of viral DNA termini from stable HIV-1 integrase nucleoprotein complexes induced by secondary DNA-binding interactions.
    Pemberton IK; Buc H; Buckle M
    Biochemistry; 1998 Feb; 37(8):2682-90. PubMed ID: 9485419
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oligomerization of Retrovirus Integrases.
    Grandgenett DP; Aihara H
    Subcell Biochem; 2018; 88():211-243. PubMed ID: 29900499
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.
    Esposito D; Craigie R
    EMBO J; 1998 Oct; 17(19):5832-43. PubMed ID: 9755183
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The use of a new in vitro reaction substrate reproducing both U3 and U5 regions of the HIV-1 3'-ends increases the correlation between the in vitro and in vivo effects of the HIV-1 integrase inhibitors.
    Tramontano E; Onidi L; Esposito F; Badas R; La Colla P
    Biochem Pharmacol; 2004 May; 67(9):1751-61. PubMed ID: 15081874
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nucleoprotein intermediates in HIV-1 DNA integration visualized by atomic force microscopy.
    Kotova S; Li M; Dimitriadis EK; Craigie R
    J Mol Biol; 2010 Jun; 399(3):491-500. PubMed ID: 20416324
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A mutation at one end of Moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo.
    Murphy JE; Goff SP
    J Virol; 1992 Aug; 66(8):5092-5. PubMed ID: 1629963
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration.
    Li M; Craigie R
    J Biol Chem; 2005 Aug; 280(32):29334-9. PubMed ID: 15958388
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Two-long terminal repeat (LTR) DNA circles are a substrate for HIV-1 integrase.
    Richetta C; Thierry S; Thierry E; Lesbats P; Lapaillerie D; Munir S; Subra F; Leh H; Deprez E; Parissi V; Delelis O
    J Biol Chem; 2019 May; 294(20):8286-8295. PubMed ID: 30971426
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcription factor YY1 interacts with retroviral integrases and facilitates integration of moloney murine leukemia virus cDNA into the host chromosomes.
    Inayoshi Y; Okino Y; Miyake K; Mizutani A; Yamamoto-Kishikawa J; Kinoshita Y; Morimoto Y; Imamura K; Morshed M; Kono K; Itoh T; Nishijima K; Iijima S
    J Virol; 2010 Aug; 84(16):8250-61. PubMed ID: 20519390
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of DNA binding and integration half-site selection by avian myeloblastosis virus integrase.
    Grandgenett DP; Inman RB; Vora AC; Fitzgerald ML
    J Virol; 1993 May; 67(5):2628-36. PubMed ID: 8474165
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Avian sarcoma and leukemia virus (ASLV) integration in vitro: mutation or deletion of integrase (IN) recognition sequences does not prevent but only reduces the efficiency and accuracy of DNA integration.
    Moreau K; Charmetant J; Gallay K; Faure C; Verdier G; Ronfort C
    Virology; 2009 Sep; 392(1):94-102. PubMed ID: 19638332
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantitative in vitro assay for human immunodeficiency virus deoxyribonucleic acid integration.
    Carteau S; Mouscadet JF; Goulaouic H; Subra F; Auclair C
    Arch Biochem Biophys; 1993 Feb; 300(2):756-60. PubMed ID: 8434953
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: effects on integration and cDNA synthesis.
    Brown HE; Chen H; Engelman A
    J Virol; 1999 Nov; 73(11):9011-20. PubMed ID: 10516007
    [TBL] [Abstract][Full Text] [Related]  

  • 79. HIV-1 integrase crosslinked oligomers are active in vitro.
    Faure A; Calmels C; Desjobert C; Castroviejo M; Caumont-Sarcos A; Tarrago-Litvak L; Litvak S; Parissi V
    Nucleic Acids Res; 2005; 33(3):977-86. PubMed ID: 15718297
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Processing of deoxyuridine mismatches and abasic sites by human immunodeficiency virus type-1 integrase.
    Mazumder A; Pommier Y
    Nucleic Acids Res; 1995 Aug; 23(15):2865-71. PubMed ID: 7659508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.