These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19362116)

  • 1. The RH 421 styryl dye induced, pore model-dependent modulation of antimicrobial peptides activity in reconstituted planar membranes.
    Apetrei A; Mereuta L; Luchian T
    Biochim Biophys Acta; 2009 Aug; 1790(8):809-16. PubMed ID: 19362116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore.
    Chulkov EG; Schagina LV; Ostroumova OS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):192-9. PubMed ID: 25223717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol.
    Gallucci E; Meleleo D; Micelli S; Picciarelli V
    Eur Biophys J; 2003 Mar; 32(1):22-32. PubMed ID: 12632203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary.
    Malkov DY; Sokolov VS
    Biochim Biophys Acta; 1996 Jan; 1278(2):197-204. PubMed ID: 8593277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation.
    Lee MT; Hung WC; Chen FY; Huang HW
    Biophys J; 2005 Dec; 89(6):4006-16. PubMed ID: 16150963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment.
    Oliynyk V; Kaatze U; Heimburg T
    Biochim Biophys Acta; 2007 Feb; 1768(2):236-45. PubMed ID: 17141732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effects of RH 421 on the activity of amphotericin B in cell and model membranes].
    Mikhaĭlova EV; Efimova SS; Ostroumova OS
    Tsitologiia; 2013; 55(2):136-9. PubMed ID: 23718076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].
    Efimova SS; Ostroumova OS; Malev VV; Shchagina LV
    Tsitologiia; 2011; 53(5):450-6. PubMed ID: 21786689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes.
    Luchian T; Mereuta L
    Langmuir; 2006 Sep; 22(20):8452-7. PubMed ID: 16981762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers.
    Krauson AJ; He J; Wimley WC
    Biochim Biophys Acta; 2012 Jul; 1818(7):1625-32. PubMed ID: 22365969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH modulation of transport properties of alamethicin oligomers inserted in zwitterionic-based artificial lipid membranes.
    Chiriac R; Luchian T
    Biophys Chem; 2007 Nov; 130(3):139-47. PubMed ID: 17888562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide.
    Mereuta L; Luchian T; Park Y; Hahm KS
    Biochem Biophys Res Commun; 2008 Sep; 373(4):467-72. PubMed ID: 18433718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF; Kropacheva TN; Raap J; Ypey DL
    Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane pores induced by magainin.
    Ludtke SJ; He K; Heller WT; Harroun TA; Yang L; Huang HW
    Biochemistry; 1996 Oct; 35(43):13723-8. PubMed ID: 8901513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance.
    Hjørringgaard CU; Vad BS; Matchkov VV; Nielsen SB; Vosegaard T; Nielsen NC; Otzen DE; Skrydstrup T
    J Phys Chem B; 2012 Jul; 116(26):7652-9. PubMed ID: 22676384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.
    Mihajlovic M; Lazaridis T
    Biochim Biophys Acta; 2012 May; 1818(5):1274-83. PubMed ID: 22290189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melittin modifies bending elasticity in an unexpected way.
    Pott T; Gerbeaud C; Barbier N; Méléard P
    Chem Phys Lipids; 2015 Jan; 185():99-108. PubMed ID: 24875586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.
    Mueller P
    Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.