BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19362129)

  • 1. Temporal and topographic alterations in expression of the alpha3 isoform of Na+, K(+)-ATPase in the rat freeze lesion model of microgyria and epileptogenesis.
    Chu Y; Parada I; Prince DA
    Neuroscience; 2009 Aug; 162(2):339-48. PubMed ID: 19362129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na,K-ATPase: increases in alpha1-messenger RNA and decreases in alpha3-messenger RNA levels in aging rat cerebral cortex.
    Chauhan N; Siegel G
    Neuroscience; 1997 May; 78(1):7-11. PubMed ID: 9135086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression patterns of sodium potassium ATPase alpha and beta subunit isoforms in mouse brain during postnatal development.
    Sundaram SM; Safina D; Ehrkamp A; Faissner A; Heumann R; Dietzel ID
    Neurochem Int; 2019 Sep; 128():163-174. PubMed ID: 31009649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na
    Hodes A; Rosen H; Cohen-Ben Ami H; Lichtstein D
    J Psychiatr Res; 2019 Aug; 115():21-28. PubMed ID: 31082653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early role for a Na
    Smith RS; Florio M; Akula SK; Neil JE; Wang Y; Hill RS; Goldman M; Mullally CD; Reed N; Bello-Espinosa L; Flores-Sarnat L; Monteiro FP; Erasmo CB; Pinto E Vairo F; Morava E; Barkovich AJ; Gonzalez-Heydrich J; Brownstein CA; McCarroll SA; Walsh CA
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal epileptogenesis in a rat model of polymicrogyria.
    Jacobs KM; Hwang BJ; Prince DA
    J Neurophysiol; 1999 Jan; 81(1):159-73. PubMed ID: 9914277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential reduction of Na+/K+ ATPase alpha3 by 17beta-estradiol influences contraction frequency in rat uteri.
    Tsai ML; Lee CL; Tang MJ; Liu MY
    Chin J Physiol; 2000 Mar; 43(1):1-8. PubMed ID: 10857462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective induction of Na,K-ATPase alpha3 subunit mRNA abundance in cardiac myocytes by retinoic acid.
    Chin S; He H; Gick G
    J Mol Cell Cardiol; 1998 Nov; 30(11):2403-10. PubMed ID: 9925375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria.
    Jin X; Jiang K; Prince DA
    J Neurophysiol; 2014 Oct; 112(7):1703-13. PubMed ID: 24990567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental cell-specific regulation of Na(+)-K(+)-ATPase alpha 1-, alpha 2-, and alpha 3-isoform gene expression.
    Herrera VL; Cova T; Sassoon D; Ruiz-Opazo N
    Am J Physiol; 1994 May; 266(5 Pt 1):C1301-12. PubMed ID: 8203495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic focal neocortical epileptogenesis: does disinhibition play a role?
    Prince DA; Jacobs KM; Salin PA; Hoffman S; Parada I
    Can J Physiol Pharmacol; 1997 May; 75(5):500-7. PubMed ID: 9250384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms of excitation-induced regulation of Na+-K+-ATPase mRNA expression in isolated rat EDL muscle.
    Murphy KT; Macdonald WA; McKenna MJ; Clausen T
    Am J Physiol Regul Integr Comp Physiol; 2006 May; 290(5):R1397-406. PubMed ID: 16357096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain cortical (Na+ K+)-ATPase in epilepsy. A biochemical study in animals and humans.
    Guillaume D
    Acta Neurol Belg; 1988; 88(5):257-80. PubMed ID: 2855292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis.
    Gu F; Parada I; Shen F; Li J; Bacci A; Graber K; Taghavi RM; Scalise K; Schwartzkroin P; Wenzel J; Prince DA
    Neurobiol Dis; 2017 Dec; 108():100-114. PubMed ID: 28823934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle Na+-K+-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes.
    Aughey RJ; Murphy KT; Clark SA; Garnham AP; Snow RJ; Cameron-Smith D; Hawley JA; McKenna MJ
    J Appl Physiol (1985); 2007 Jul; 103(1):39-47. PubMed ID: 17446412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of hypothyroidism on Na-K-ATPase mRNA alpha isoforms in the developing rat brain.
    Chaudhury S; Bajpai M; Bhattacharya S
    J Mol Neurosci; 1996; 7(3):229-34. PubMed ID: 8906618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective ligands for Na
    Chakraborty D; Fedorova OV; Bagrov AY; Kaphzan H
    Neuropharmacology; 2017 May; 117():338-351. PubMed ID: 28232062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of Na,K-ATPase isoforms in oligodendrocytes and astrocytes.
    Fink D; Knapp PE; Mata M
    Dev Neurosci; 1996; 18(4):319-26. PubMed ID: 8911770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of neuronal migration disorders in neocortical structures: loss or preservation of inhibitory interneurons?
    Schwarz P; Stichel CC; Luhmann HJ
    Epilepsia; 2000 Jul; 41(7):781-7. PubMed ID: 10897147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of Na/K-ATPase alpha-subunit isoform gene expressions in cardiac myocytes by ouabain and other hypertrophic stimuli.
    Huang L; Kometiani P; Xie Z
    J Mol Cell Cardiol; 1997 Nov; 29(11):3157-67. PubMed ID: 9405189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.