BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 19362814)

  • 1. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes.
    Striebel F; Kress W; Weber-Ban E
    Curr Opin Struct Biol; 2009 Apr; 19(2):209-17. PubMed ID: 19362814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteasomes and their associated ATPases: a destructive combination.
    Smith DM; Benaroudj N; Goldberg A
    J Struct Biol; 2006 Oct; 156(1):72-83. PubMed ID: 16919475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.
    Djuranovic S; Hartmann MD; Habeck M; Ursinus A; Zwickl P; Martin J; Lupas AN; Zeth K
    Mol Cell; 2009 Jun; 34(5):580-90. PubMed ID: 19481487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular machines for protein degradation.
    Groll M; Bochtler M; Brandstetter H; Clausen T; Huber R
    Chembiochem; 2005 Feb; 6(2):222-56. PubMed ID: 15678420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation.
    He ZG; Feng Y; Wang J; Jiang PX
    Arch Biochem Biophys; 2008 Mar; 471(2):176-83. PubMed ID: 18237540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How ATPases unravel a mystery.
    Gallastegui N; Groll M
    Structure; 2009 Oct; 17(10):1279-81. PubMed ID: 19836328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines.
    Martin A; Baker TA; Sauer RT
    Nature; 2005 Oct; 437(7062):1115-20. PubMed ID: 16237435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unlocking the proteasome door.
    Saeki Y; Tanaka K
    Mol Cell; 2007 Sep; 27(6):865-7. PubMed ID: 17889660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the Jab1/MPN domain and its implications for proteasome function.
    Tran HJ; Allen MD; Löwe J; Bycroft M
    Biochemistry; 2003 Oct; 42(39):11460-5. PubMed ID: 14516197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa.
    Sutter M; Striebel F; Damberger FF; Allain FH; Weber-Ban E
    FEBS Lett; 2009 Oct; 583(19):3151-7. PubMed ID: 19761766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteasomes.
    Dahlmann B
    Essays Biochem; 2005; 41():31-48. PubMed ID: 16250896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a new AAA+ protein from archaea.
    Summer H; Bruderer R; Weber-Ban E
    J Struct Biol; 2006 Oct; 156(1):120-9. PubMed ID: 16584891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.
    Smith DM; Kafri G; Cheng Y; Ng D; Walz T; Goldberg AL
    Mol Cell; 2005 Dec; 20(5):687-98. PubMed ID: 16337593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space.
    Graef M; Seewald G; Langer T
    Mol Cell Biol; 2007 Apr; 27(7):2476-85. PubMed ID: 17261594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time.
    Kress W; Mutschler H; Weber-Ban E
    Biochemistry; 2007 May; 46(21):6183-93. PubMed ID: 17477547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClpS is an essential component of the N-end rule pathway in Escherichia coli.
    Erbse A; Schmidt R; Bornemann T; Schneider-Mergener J; Mogk A; Zahn R; Dougan DA; Bukau B
    Nature; 2006 Feb; 439(7077):753-6. PubMed ID: 16467841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii.
    Zhang F; Hu M; Tian G; Zhang P; Finley D; Jeffrey PD; Shi Y
    Mol Cell; 2009 May; 34(4):473-84. PubMed ID: 19481527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus.
    Striebel F; Hunkeler M; Summer H; Weber-Ban E
    EMBO J; 2010 Apr; 29(7):1262-71. PubMed ID: 20203624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and structural characterization of the Methanosarcina mazei proteasome and PAN complexes.
    Medalia N; Sharon M; Martinez-Arias R; Mihalache O; Robinson CV; Medalia O; Zwickl P
    J Struct Biol; 2006 Oct; 156(1):84-92. PubMed ID: 16690322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.