BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 19362814)

  • 21. Archaeal proteasomes and other regulatory proteases.
    Maupin-Furlow JA; Gil MA; Humbard MA; Kirkland PA; Li W; Reuter CJ; Wright AJ
    Curr Opin Microbiol; 2005 Dec; 8(6):720-8. PubMed ID: 16256423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conserved unfoldase activity for the p97 AAA-ATPase in proteasomal degradation.
    Beskow A; Grimberg KB; Bott LC; Salomons FA; Dantuma NP; Young P
    J Mol Biol; 2009 Dec; 394(4):732-46. PubMed ID: 19782090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea.
    Fu X; Liu R; Sanchez I; Silva-Sanchez C; Hepowit NL; Cao S; Chen S; Maupin-Furlow J
    mBio; 2016 May; 7(3):. PubMed ID: 27190215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PACemakers of proteasome core particle assembly.
    Ramos PC; Dohmen RJ
    Structure; 2008 Sep; 16(9):1296-304. PubMed ID: 18786393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The AAA team: related ATPases with diverse functions.
    Patel S; Latterich M
    Trends Cell Biol; 1998 Feb; 8(2):65-71. PubMed ID: 9695811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions.
    Woo JS; Lim JH; Shin HC; Suh MK; Ku B; Lee KH; Joo K; Robinson H; Lee J; Park SY; Ha NC; Oh BH
    Cell; 2009 Jan; 136(1):85-96. PubMed ID: 19135891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases.
    Makarova KS; Aravind L; Koonin EV
    Protein Sci; 1999 Aug; 8(8):1714-9. PubMed ID: 10452618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog.
    Bae B; Chen YH; Costa A; Onesti S; Brunzelle JS; Lin Y; Cann IK; Nair SK
    Structure; 2009 Feb; 17(2):211-22. PubMed ID: 19217392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fundamental Characteristics of AAA+ Protein Family Structure and Function.
    Miller JM; Enemark EJ
    Archaea; 2016; 2016():9294307. PubMed ID: 27703410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissecting various ATP-dependent steps involved in proteasomal degradation.
    Ogura T; Tanaka K
    Mol Cell; 2003 Jan; 11(1):3-5. PubMed ID: 12535513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea.
    Djuranovic S; Rockel B; Lupas AN; Martin J
    J Struct Biol; 2006 Oct; 156(1):130-8. PubMed ID: 16730457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.
    Cranz-Mileva S; Imkamp F; Kolygo K; Maglica Z; Kress W; Weber-Ban E
    J Mol Biol; 2008 Apr; 378(2):412-24. PubMed ID: 18358489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying chaperone-proteases using a real-time approach based on FRET.
    Kolygo K; Ranjan N; Kress W; Striebel F; Hollenstein K; Neelsen K; Steiner M; Summer H; Weber-Ban E
    J Struct Biol; 2009 Nov; 168(2):267-77. PubMed ID: 19591940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase.
    Barthelme D; Sauer RT
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3327-32. PubMed ID: 23401548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional similarities between two bacterial chromosome compacting machineries.
    Lim JH; Oh BH
    Biochem Biophys Res Commun; 2009 Aug; 386(3):415-9. PubMed ID: 19523447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease.
    Burton RE; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2005 Mar; 12(3):245-51. PubMed ID: 15696175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two unique membrane-bound AAA proteins from Sulfolobus solfataricus.
    Serek-Heuberger J; Hobel CF; Dunin-Horkawicz S; Rockel B; Martin J; Lupas AN
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):118-22. PubMed ID: 19143614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii.
    Zhang F; Wu Z; Zhang P; Tian G; Finley D; Shi Y
    Mol Cell; 2009 May; 34(4):485-96. PubMed ID: 19481528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.