These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19362903)

  • 21. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke.
    Stein J; Narendran K; McBean J; Krebs K; Hughes R
    Am J Phys Med Rehabil; 2007 Apr; 86(4):255-61. PubMed ID: 17413538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mechanism for elbow exoskeleton for customised training.
    Manna SK; Dubey VN
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1597-1602. PubMed ID: 28814048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot.
    Sergi F; Lee MM; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650481. PubMed ID: 24187298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metrological characterization of a cycle-ergometer to optimize the cycling induced by functional electrical stimulation on patients with stroke.
    Comolli L; Ferrante S; Pedrocchi A; Bocciolone M; Ferrigno G; Molteni F
    Med Eng Phys; 2010 May; 32(4):339-48. PubMed ID: 20171923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Post-stroke robotic training of the upper limb in the early rehabilitation phase.
    Masiero S; Rosati G; Valarini S; Rossi A
    Funct Neurol; 2009; 24(4):203-6. PubMed ID: 20412726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ARAMIS project: a concept robot and technical design.
    Colizzi L; Lidonnici A; Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):1011-101. PubMed ID: 19841834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robotics in neuro-rehabilitation.
    Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):955-60. PubMed ID: 19841823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel energy-efficient rotational variable stiffness actuator.
    Rao S; Carloni R; Stramigioli S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8175-8. PubMed ID: 22256239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Including upper extremity robotic therapy during early inpatient stroke rehabilitation may not lead to better outcomes than conventional treatment.
    Pang MY
    J Physiother; 2014 Sep; 60(3):166. PubMed ID: 25084629
    [No Abstract]   [Full Text] [Related]  

  • 34. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke.
    Miller LC; Ruiz-Torres R; Stienen AH; Dewald JP
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2312-7. PubMed ID: 19567336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Commentary to: including upper extremity robotic therapy during early inpatient stroke rehabilitation may not lead to better outcomes than conventional treatment.
    Tong RK
    J Physiother; 2014 Sep; 60(3):166. PubMed ID: 25084630
    [No Abstract]   [Full Text] [Related]  

  • 36. Quantitative analysis and control of the torque profile of the upper limb using a kinetic model and motion measurements.
    Abdul-Ameer HK
    Int J Artif Organs; 2022 Jul; 45(7):631-641. PubMed ID: 35603541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons.
    Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy.
    Masiero S; Carraro E; Ferraro C; Gallina P; Rossi A; Rosati G
    J Rehabil Med; 2009 Nov; 41(12):981-5. PubMed ID: 19841828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery.
    Kowalczewski J; Gritsenko V; Ashworth N; Ellaway P; Prochazka A
    Arch Phys Med Rehabil; 2007 Jul; 88(7):833-9. PubMed ID: 17601461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.