These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19363030)

  • 1. Nickel-based Enzyme Systems.
    Ragsdale SW
    J Biol Chem; 2009 Jul; 284(28):18571-5. PubMed ID: 19363030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel biochemistry.
    Ragsdale SW
    Curr Opin Chem Biol; 1998 Apr; 2(2):208-15. PubMed ID: 9667931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, function, and biosynthesis of nickel-dependent enzymes.
    Alfano M; Cavazza C
    Protein Sci; 2020 May; 29(5):1071-1089. PubMed ID: 32022353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-dependent metalloenzymes.
    Boer JL; Mulrooney SB; Hausinger RP
    Arch Biochem Biophys; 2014 Feb; 544():142-52. PubMed ID: 24036122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states.
    Volbeda A; Martin L; Liebgott PP; De Lacey AL; Fontecilla-Camps JC
    Metallomics; 2015 Apr; 7(4):710-8. PubMed ID: 25780984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate.
    Murphy BJ; Hidalgo R; Roessler MM; Evans RM; Ash PA; Myers WK; Vincent KA; Armstrong FA
    J Am Chem Soc; 2015 Jul; 137(26):8484-9. PubMed ID: 26103582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel-binding proteins.
    Wattt RK; Ludden PW
    Cell Mol Life Sci; 1999 Nov; 56(7-8):604-25. PubMed ID: 11212309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex.
    Kim S; Jeong HY; Kim S; Kim H; Lee S; Cho J; Kim C; Lee D
    Chemistry; 2021 Mar; 27(14):4700-4708. PubMed ID: 33427344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active sites of transition-metal enzymes with a focus on nickel.
    Ermler U; Grabarse W; Shima S; Goubeaud M; Thauer RK
    Curr Opin Struct Biol; 1998 Dec; 8(6):749-58. PubMed ID: 9914255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.
    Shaw WJ; Helm ML; DuBois DL
    Biochim Biophys Acta; 2013; 1827(8-9):1123-39. PubMed ID: 23313415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of oxidative titrations of Desulfovibrio gigas hydrogenase; implications for the catalytic mechanism.
    Roberts LM; Lindahl PA
    Biochemistry; 1994 Nov; 33(47):14339-50. PubMed ID: 7947844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxygen reactivity of an artificial hydrogenase designed in a reengineered copper storage protein.
    Selvan D; Shi Y; Prasad P; Crane S; Zhang Y; Chakraborty S
    Dalton Trans; 2020 Feb; 49(6):1928-1934. PubMed ID: 31971173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel and the carbon cycle.
    Ragsdale SW
    J Inorg Biochem; 2007 Nov; 101(11-12):1657-66. PubMed ID: 17716738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases.
    Wombwell C; Reisner E
    Dalton Trans; 2014 Mar; 43(11):4483-93. PubMed ID: 24366040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation.
    Rakowski DuBois M; DuBois DL
    Chem Soc Rev; 2009 Jan; 38(1):62-72. PubMed ID: 19088965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolytically active tetranuclear nickel complexes with structural resemblance to the active site of urease.
    Carlsson H; Haukka M; Nordlander E
    Inorg Chem; 2002 Oct; 41(20):4981-3. PubMed ID: 12354025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase.
    Manesis AC; O'Connor MJ; Schneider CR; Shafaat HS
    J Am Chem Soc; 2017 Aug; 139(30):10328-10338. PubMed ID: 28675928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and the hydrogenases.
    Evans DJ; Pickett CJ
    Chem Soc Rev; 2003 Sep; 32(5):268-75. PubMed ID: 14518180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quest for metal/NH bifunctional bioinspired catalysis in a dinuclear platform.
    Kuwata S; Ikariya T
    Dalton Trans; 2010 Mar; 39(12):2984-92. PubMed ID: 20221529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.