These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19363030)

  • 21. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heteroleptic bis(dipyrrinato)copper(II) and nickel(II) complexes.
    Toyoda R; Tsuchiya M; Sakamoto R; Matsuoka R; Wu KH; Hattori Y; Nishihara H
    Dalton Trans; 2015 Sep; 44(34):15103-6. PubMed ID: 25847680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of XAS for the elucidation of metal structure and function: applications to nickel biochemistry, molecular toxicology, and carcinogenesis.
    Carrington PE; Al-Mjeni F; Zoroddu MA; Costa M; Maroney MJ
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):705-8. PubMed ID: 12426116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS): a trinuclear nickel complex employing deprotonated amides and bridging thiolates.
    Hatlevik Ø; Blanksma MC; Mathrubootham V; Arif AM; Hegg EL
    J Biol Inorg Chem; 2004 Mar; 9(2):238-46. PubMed ID: 14735332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic characterization of the key catalytic intermediate Ni-C in the O2-tolerant [NiFe] hydrogenase I from Aquifex aeolicus: evidence of a weakly bound hydride.
    Pandelia ME; Infossi P; Stein M; Giudici-Orticoni MT; Lubitz W
    Chem Commun (Camb); 2012 Jan; 48(6):823-5. PubMed ID: 22143669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase.
    Amara P; Volbeda A; Fontecilla-Camps JC; Field MJ
    J Am Chem Soc; 2005 Mar; 127(8):2776-84. PubMed ID: 15725036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surprising cofactors in metalloenzymes.
    Drennan CL; Peters JW
    Curr Opin Struct Biol; 2003 Apr; 13(2):220-6. PubMed ID: 12727516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nickel complexes of carboxylate-containing polydentate ligands as models for the active site of urease.
    Carlsson H; Haukka M; Bousseksou A; Latour JM; Nordlander E
    Inorg Chem; 2004 Dec; 43(26):8252-62. PubMed ID: 15606171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production.
    Canaguier S; Artero V; Fontecave M
    Dalton Trans; 2008 Jan; (3):315-25. PubMed ID: 18411840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Structure of the Elusive Urease-Urea Complex Unveils the Mechanism of a Paradigmatic Nickel-Dependent Enzyme.
    Mazzei L; Cianci M; Benini S; Ciurli S
    Angew Chem Int Ed Engl; 2019 May; 58(22):7415-7419. PubMed ID: 30969470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interplay of metal ions and urease.
    Carter EL; Flugga N; Boer JL; Mulrooney SB; Hausinger RP
    Metallomics; 2009; 1(3):207-21. PubMed ID: 20046957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switching on elusive organometallic mechanisms with photoredox catalysis.
    Terrett JA; Cuthbertson JD; Shurtleff VW; MacMillan DW
    Nature; 2015 Aug; 524(7565):330-4. PubMed ID: 26266976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate.
    Mazzei L; Musiani F; Ciurli S
    J Biol Inorg Chem; 2020 Sep; 25(6):829-845. PubMed ID: 32809087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling nickel hydrogenases: synthesis and structure of a distorted octahedral complex with an unprecedented [NiS(4)H(2)] core.
    Alvarez HM; Krawiec M; Donovan-Merkert BT; Fouzi M; Rabinovich D
    Inorg Chem; 2001 Nov; 40(23):5736-7. PubMed ID: 11681879
    [No Abstract]   [Full Text] [Related]  

  • 35. Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis.
    Lindahl PA
    J Biol Inorg Chem; 2004 Jul; 9(5):516-24. PubMed ID: 15221478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
    Slater JW; Marguet SC; Monaco HA; Shafaat HS
    J Am Chem Soc; 2018 Aug; 140(32):10250-10262. PubMed ID: 30016865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases.
    Greco C; Bruschi M; De Gioia L; Ryde U
    Inorg Chem; 2007 Jul; 46(15):5911-21. PubMed ID: 17602468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction.
    Chen S; Bi J; Zhao Y; Yang L; Zhang C; Ma Y; Wu Q; Wang X; Hu Z
    Adv Mater; 2012 Nov; 24(41):5593-7, 5646. PubMed ID: 22899547
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural analogues of the bimetallic reaction center in acetyl CoA synthase: a Ni--Ni model with bound CO.
    Linck RC; Spahn CW; Rauchfuss TB; Wilson SR
    J Am Chem Soc; 2003 Jul; 125(29):8700-1. PubMed ID: 12862445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis.
    Zambelli B; Musiani F; Benini S; Ciurli S
    Acc Chem Res; 2011 Jul; 44(7):520-30. PubMed ID: 21542631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.