BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19363116)

  • 21. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis.
    Yu Y; Yan F; He Y; Qin Y; Chen Y; Chai Y; Guo JH
    Microbiology (Reading); 2018 May; 164(5):848-862. PubMed ID: 29629859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis.
    Kantiwal U; Pandey J
    Appl Biochem Biotechnol; 2023 Mar; 195(3):1947-1967. PubMed ID: 36401726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms.
    Kobayashi K; Ikemoto Y
    PLoS Genet; 2019 Oct; 15(10):e1008232. PubMed ID: 31622331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium Prevents Biofilm Dispersion in Bacillus subtilis.
    Nishikawa M; Kobayashi K
    J Bacteriol; 2021 Jun; 203(14):e0011421. PubMed ID: 33927049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis.
    Kimura T; Kobayashi K
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32393519
    [No Abstract]   [Full Text] [Related]  

  • 27. The sinR ortholog PGN_0088 encodes a transcriptional regulator that inhibits polysaccharide synthesis in Porphyromonas gingivalis ATCC 33277 biofilms.
    Yamamoto R; Noiri Y; Yamaguchi M; Asahi Y; Maezono H; Kuboniwa M; Hayashi M; Ebisu S
    PLoS One; 2013; 8(2):e56017. PubMed ID: 23405247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of
    Kobayashi K
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30718304
    [No Abstract]   [Full Text] [Related]  

  • 29. The majority of the matrix protein TapA is dispensable for Bacillus subtilis colony biofilm architecture.
    Earl C; Arnaouteli S; Bamford NC; Porter M; Sukhodub T; MacPhee CE; Stanley-Wall NR
    Mol Microbiol; 2020 Dec; 114(6):920-933. PubMed ID: 32491277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation.
    Chai Y; Kolter R; Losick R
    J Bacteriol; 2009 Apr; 191(8):2423-30. PubMed ID: 19201793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A molecular clutch disables flagella in the Bacillus subtilis biofilm.
    Blair KM; Turner L; Winkelman JT; Berg HC; Kearns DB
    Science; 2008 Jun; 320(5883):1636-8. PubMed ID: 18566286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium.
    Gallegos-Monterrosa R; Mhatre E; Kovács ÁT
    Microbiology (Reading); 2016 Nov; 162(11):1922-1932. PubMed ID: 27655338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis.
    Newman JA; Rodrigues C; Lewis RJ
    J Biol Chem; 2013 Apr; 288(15):10766-78. PubMed ID: 23430750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm.
    Marlow VL; Porter M; Hobley L; Kiley TB; Swedlow JR; Davidson FA; Stanley-Wall NR
    J Bacteriol; 2014 Jan; 196(1):16-27. PubMed ID: 24123822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis.
    Wu J; Li W; Zhao SG; Qian SH; Wang Z; Zhou MJ; Hu WS; Wang J; Hu LX; Liu Y; Xue ZL
    Microb Cell Fact; 2021 Jun; 20(1):113. PubMed ID: 34098969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis.
    Milton ME; Cavanagh J
    J Mol Biol; 2023 Feb; 435(3):167923. PubMed ID: 36535428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR.
    DeLoughery A; Dengler V; Chai Y; Losick R
    Mol Microbiol; 2016 Jan; 99(2):425-37. PubMed ID: 26434553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of
    Pandit S; Fazilati M; Gaska K; Derouiche A; Nypelö T; Mijakovic I; Kádár R
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis.
    Colledge VL; Fogg MJ; Levdikov VM; Leech A; Dodson EJ; Wilkinson AJ
    J Mol Biol; 2011 Aug; 411(3):597-613. PubMed ID: 21708175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-transcriptionally generated cell heterogeneity regulates biofilm formation in Bacillus subtilis.
    Ogura M
    Genes Cells; 2016 Apr; 21(4):335-49. PubMed ID: 26819068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.