BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19363159)

  • 1. Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2.
    Shenoy SK; Modi AS; Shukla AK; Xiao K; Berthouze M; Ahn S; Wilkinson KD; Miller WE; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6650-5. PubMed ID: 19363159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes.
    Shenoy SK; Lefkowitz RJ
    J Biol Chem; 2005 Apr; 280(15):15315-24. PubMed ID: 15699045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination.
    Shenoy SK; Lefkowitz RJ
    J Biol Chem; 2003 Apr; 278(16):14498-506. PubMed ID: 12574160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deubiquitinases and their emerging roles in β-arrestin-mediated signaling.
    Shenoy SK
    Methods Enzymol; 2014; 535():351-70. PubMed ID: 24377933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation.
    Shenoy SK; Barak LS; Xiao K; Ahn S; Berthouze M; Shukla AK; Luttrell LM; Lefkowitz RJ
    J Biol Chem; 2007 Oct; 282(40):29549-62. PubMed ID: 17666399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian α arrestins link activated seven transmembrane receptors to Nedd4 family e3 ubiquitin ligases and interact with β arrestins.
    Shea FF; Rowell JL; Li Y; Chang TH; Alvarez CE
    PLoS One; 2012; 7(12):e50557. PubMed ID: 23236378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin.
    Shenoy SK; McDonald PH; Kohout TA; Lefkowitz RJ
    Science; 2001 Nov; 294(5545):1307-13. PubMed ID: 11588219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intact MDM2 E3 ligase activity is required for the cytosolic localization and function of β-arrestin2.
    Yin C; Zhang R; Xu Y; Chen Q; Xie X
    Mol Biol Cell; 2011 May; 22(9):1608-16. PubMed ID: 21389118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5.
    Li X; Baillie GS; Houslay MD
    J Biol Chem; 2009 Jun; 284(24):16170-16182. PubMed ID: 19372219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrestins and protein ubiquitination.
    Kommaddi RP; Shenoy SK
    Prog Mol Biol Transl Sci; 2013; 118():175-204. PubMed ID: 23764054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor.
    Shenoy SK; Xiao K; Venkataramanan V; Snyder PM; Freedman NJ; Weissman AM
    J Biol Chem; 2008 Aug; 283(32):22166-76. PubMed ID: 18544533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination.
    Jean-Charles PY; Freedman NJ; Shenoy SK
    Prog Mol Biol Transl Sci; 2016; 141():339-69. PubMed ID: 27378762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation.
    Tohgo A; Choy EW; Gesty-Palmer D; Pierce KL; Laporte S; Oakley RH; Caron MG; Lefkowitz RJ; Luttrell LM
    J Biol Chem; 2003 Feb; 278(8):6258-67. PubMed ID: 12473660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic significance of USP33 in advanced colorectal cancer patients: new insights into β-arrestin-dependent ERK signaling.
    Liu H; Zhang Q; Li K; Gong Z; Liu Z; Xu Y; Swaney MH; Xiao K; Chen Y
    Oncotarget; 2016 Dec; 7(49):81223-81240. PubMed ID: 27835898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking.
    Han SO; Kommaddi RP; Shenoy SK
    EMBO Rep; 2013 Feb; 14(2):164-71. PubMed ID: 23208550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4.
    Shukla AK; Kim J; Ahn S; Xiao K; Shenoy SK; Liedtke W; Lefkowitz RJ
    J Biol Chem; 2010 Sep; 285(39):30115-25. PubMed ID: 20650893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction.
    Jean-Charles PY; Rajiv V; Shenoy SK
    J Cell Physiol; 2016 Oct; 231(10):2071-80. PubMed ID: 26790995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity.
    Hanson SM; Cleghorn WM; Francis DJ; Vishnivetskiy SA; Raman D; Song X; Nair KS; Slepak VZ; Klug CS; Gurevich VV
    J Mol Biol; 2007 Apr; 368(2):375-87. PubMed ID: 17359998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin.
    Yun Y; Yoon HJ; Jeong Y; Choi Y; Jang S; Chung KY; Lee HH
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301934120. PubMed ID: 37399373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beta-arrestin-1 competitively inhibits insulin-induced ubiquitination and degradation of insulin receptor substrate 1.
    Usui I; Imamura T; Huang J; Satoh H; Shenoy SK; Lefkowitz RJ; Hupfeld CJ; Olefsky JM
    Mol Cell Biol; 2004 Oct; 24(20):8929-37. PubMed ID: 15456867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.