BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19363649)

  • 21. Gap and tight junctions in the formation of feather branches: A descriptive ultrastructural study.
    Alibardi L
    Ann Anat; 2010 Aug; 192(4):251-8. PubMed ID: 20691576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization and characterization of specific cornification proteins in avian epidermis.
    Alibardi L; Toni M
    Cells Tissues Organs; 2004; 178(4):204-15. PubMed ID: 15812148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary origin of the feather epidermis.
    Sawyer RH; Rogers L; Washington L; Glenn TC; Knapp LW
    Dev Dyn; 2005 Feb; 232(2):256-67. PubMed ID: 15637693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunocytochemical and autoradiographic studies on the process of keratinization in avian epidermis suggests absence of keratohyalin.
    Alibardi L
    J Morphol; 2004 Feb; 259(2):238-53. PubMed ID: 14755753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms.
    Ng CS; Wu P; Fan WL; Yan J; Chen CK; Lai YT; Wu SM; Mao CT; Chen JJ; Lu MY; Ho MR; Widelitz RB; Chen CF; Chuong CM; Li WH
    Genome Biol Evol; 2014 Aug; 6(9):2258-73. PubMed ID: 25152353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved regulatory switches for the transition from natal down to juvenile feather in birds.
    Chen CK; Chang YM; Jiang TX; Yue Z; Liu TY; Lu J; Yu Z; Lin JJ; Vu TD; Huang TY; Harn HI; Ng CS; Wu P; Chuong CM; Li WH
    Nat Commun; 2024 May; 15(1):4174. PubMed ID: 38755126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae.
    Yue Z; Jiang TX; Wu P; Widelitz RB; Chuong CM
    Dev Biol; 2012 Dec; 372(1):45-54. PubMed ID: 23000358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunolocalization of a Histidine-Rich Epidermal Differentiation Protein in the Chicken Supports the Hypothesis of an Evolutionary Developmental Link between the Embryonic Subperiderm and Feather Barbs and Barbules.
    Alibardi L; Holthaus KB; Sukseree S; Hermann M; Tschachler E; Eckhart L
    PLoS One; 2016; 11(12):e0167789. PubMed ID: 27936131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Horse hooves and bird feathers: Two model systems for studying the structure and development of highly adapted integumentary accessory organs--the role of the dermo-epidermal interface for the micro-architecture of complex epidermal structures.
    Bragulla H; Hirschberg RM
    J Exp Zool B Mol Dev Evol; 2003 Aug; 298(1):140-51. PubMed ID: 12949774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission electron microscopic and immunohistochemical observations of resting follicles of feathers in chicken show massive cell degeneration.
    Alibardi L
    Anat Sci Int; 2018 Sep; 93(4):548-558. PubMed ID: 29931653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers.
    Harris MP; Fallon JF; Prum RO
    J Exp Zool; 2002 Aug; 294(2):160-76. PubMed ID: 12210117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.
    Greenwold MJ; Sawyer RH
    J Exp Zool B Mol Dev Evol; 2011 Dec; 316(8):609-16. PubMed ID: 21898788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of morphogenesis and keratinization in transfilter recombinants of feather-forming skin.
    König G; Sawyer RH
    Dev Biol; 1985 Jun; 109(2):381-92. PubMed ID: 2581831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Young's modulus varies with differential orientation of keratin in feathers.
    Cameron GJ; Wess TJ; Bonser RH
    J Struct Biol; 2003 Aug; 143(2):118-23. PubMed ID: 12972348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Avian skin development and the evolutionary origin of feathers.
    Sawyer RH; Knapp LW
    J Exp Zool B Mol Dev Evol; 2003 Aug; 298(1):57-72. PubMed ID: 12949769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2016 Sep; 326(6):338-351. PubMed ID: 27506161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Avian feather development: relationships between morphogenesis and keratinization.
    Haake AR; König G; Sawyer RH
    Dev Biol; 1984 Dec; 106(2):406-13. PubMed ID: 6209181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey.
    Alibardi L
    Anat Rec (Hoboken); 2022 Feb; 305(2):333-358. PubMed ID: 34219408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profiles of pulp infiltrating lymphocytes at various times throughout feather regeneration in Smyth line chickens with vitiligo.
    Shresta S; Smyth JR; Erf GF
    Autoimmunity; 1997; 25(4):193-201. PubMed ID: 9344327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunocytochemical localization and biochemical analysis of alpha and beta keratins in the avian lingual epithelium.
    Carver WE; Sawyer RH
    Am J Anat; 1989 Jan; 184(1):66-75. PubMed ID: 2464920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.