These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19364070)

  • 21. The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site.
    Wang J; Xu J; Finnerty J; Furuta M; Steiner DF; Verchere CB
    Diabetes; 2001 Mar; 50(3):534-9. PubMed ID: 11246872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneous Expression of Proinsulin Processing Enzymes in Beta Cells of Non-diabetic and Type 2 Diabetic Humans.
    Teitelman G
    J Histochem Cytochem; 2019 Jun; 67(6):385-400. PubMed ID: 30759032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets.
    Olerud J; Kanaykina N; Vasylovska S; King D; Sandberg M; Jansson L; Kozlova EN
    Diabetologia; 2009 Dec; 52(12):2594-601. PubMed ID: 19823803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Juvenile porcine islets can restore euglycemia in diabetic athymic nude mice after xenotransplantation.
    Krishnan R; Buder B; Alexander M; Foster CE; Lakey JR
    Transplantation; 2015 Apr; 99(4):710-6. PubMed ID: 25793438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anti-caspase-3 preconditioning increases proinsulin secretion and deteriorates posttransplant function of isolated human islets.
    Brandhorst D; Brandhorst H; Maataoui V; Maataoui A; Johnson PR
    Apoptosis; 2013 Jun; 18(6):681-8. PubMed ID: 23536200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insulin degradation by acinar cell proteases creates a dysfunctional environment for human islets before/after transplantation: benefits of α-1 antitrypsin treatment.
    Loganathan G; Dawra RK; Pugazhenthi S; Guo Z; Soltani SM; Wiseman A; Sanders MA; Papas KK; Velayutham K; Saluja AK; Sutherland DE; Hering BJ; Balamurugan AN
    Transplantation; 2011 Dec; 92(11):1222-30. PubMed ID: 22089666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocin-diabetic non-human primates.
    Safley SA; Kenyon NS; Berman DM; Barber GF; Willman M; Duncanson S; Iwakoshi N; Holdcraft R; Gazda L; Thompson P; Badell IR; Sambanis A; Ricordi C; Weber CJ
    Xenotransplantation; 2018 Nov; 25(6):e12450. PubMed ID: 30117193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non-insulin-dependent diabetes mellitus.
    Alarcón C; Leahy JL; Schuppin GT; Rhodes CJ
    J Clin Invest; 1995 Mar; 95(3):1032-9. PubMed ID: 7883951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis.
    Jones HB; Reens J; Brocklehurst SR; Betts CJ; Bickerton S; Bigley AL; Jenkins RP; Whalley NM; Morgan D; Smith DM
    Int J Exp Pathol; 2014 Feb; 95(1):29-48. PubMed ID: 24456331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prohormone convertases (PC1/3 and PC2) in rat and human pancreas and islet cell tumors: subcellular immunohistochemical analysis.
    Itoh Y; Tanaka S; Takekoshi S; Itoh J; Osamura RY
    Pathol Int; 1996 Oct; 46(10):726-37. PubMed ID: 8916141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A selective decrease in the beta cell mass of human islets transplanted into diabetic nude mice.
    Davalli AM; Ogawa Y; Ricordi C; Scharp DW; Bonner-Weir S; Weir GC
    Transplantation; 1995 Mar; 59(6):817-20. PubMed ID: 7701574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of pancreatic beta cells in response to long-term normoglycemia after pancreas or islet transplantation in severely streptozotocin diabetic adult rats.
    Jörns A; Klempnauer J; Tiedge M; Lenzen S
    Pancreas; 2001 Aug; 23(2):186-96. PubMed ID: 11484921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in amyloid deposition in islets of transgenic mice expressing human islet amyloid polypeptide versus human islets implanted into nude mice.
    Westermark G; Westermark P; Eizirik DL; Hellerström C; Fox N; Steiner DF; Andersson A
    Metabolism; 1999 Apr; 48(4):448-54. PubMed ID: 10206436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats.
    Nie Y; Nakashima M; Brubaker PL; Li QL; Perfetti R; Jansen E; Zambre Y; Pipeleers D; Friedman TC
    J Clin Invest; 2000 Apr; 105(7):955-65. PubMed ID: 10749575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6.
    Furukawa H; Carroll RJ; Swift HH; Steiner DF
    Diabetes; 1999 Jul; 48(7):1395-401. PubMed ID: 10389844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in β-cells.
    Wang J; Osei K
    Biochem Biophys Res Commun; 2011 Jul; 411(1):150-5. PubMed ID: 21723250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proinsulin processing in the diabetic Goto-Kakizaki rat.
    Guest PC; Abdel-Halim SM; Gross DJ; Clark A; Poitout V; Amaria R; Ostenson CG; Hutton JC
    J Endocrinol; 2002 Dec; 175(3):637-47. PubMed ID: 12475375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3.
    Zhu X; Orci L; Carroll R; Norrbom C; Ravazzola M; Steiner DF
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10299-304. PubMed ID: 12136131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced NO production improves early canine islet xenograft function: a role for nitric oxide in islet xenograft primary nonfunction.
    Ketchum RJ; Deng S; Weber M; Jahr H; Brayman KL
    Cell Transplant; 2000; 9(4):453-62. PubMed ID: 11038062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors affecting transplant outcomes in diabetic nude mice receiving human, porcine, and nonhuman primate islets: analysis of 335 transplantations.
    Loganathan G; Graham ML; Radosevich DM; Soltani SM; Tiwari M; Anazawa T; Papas KK; Sutherland DE; Hering BJ; Balamurugan AN
    Transplantation; 2013 Jun; 95(12):1439-47. PubMed ID: 23677052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.