These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19364125)

  • 1. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis.
    Yang X; Nesbitt NM; Dubnau E; Smith I; Sampson NS
    Biochemistry; 2009 May; 48(18):3819-21. PubMed ID: 19364125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids.
    Savvi S; Warner DF; Kana BD; McKinney JD; Mizrahi V; Dawes SS
    J Bacteriol; 2008 Jun; 190(11):3886-95. PubMed ID: 18375549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propionate prevents loss of the PDIM virulence lipid in Mycobacterium tuberculosis.
    Mulholland CV; Wiggins TJ; Cui J; Vilchèze C; Rajagopalan S; Shultis MW; Reyes-Fernández EZ; Jacobs WR; Berney M
    Nat Microbiol; 2024 Jun; 9(6):1607-1618. PubMed ID: 38740932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis.
    Upton AM; McKinney JD
    Microbiology (Reading); 2007 Dec; 153(Pt 12):3973-3982. PubMed ID: 18048912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment.
    VanderVen BC; Fahey RJ; Lee W; Liu Y; Abramovitch RB; Memmott C; Crowe AM; Eltis LD; Perola E; Deininger DD; Wang T; Locher CP; Russell DG
    PLoS Pathog; 2015 Feb; 11(2):e1004679. PubMed ID: 25675247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis.
    Lee JJ; Lim J; Gao S; Lawson CP; Odell M; Raheem S; Woo J; Kang SH; Kang SS; Jeon BY; Eoh H
    Sci Rep; 2018 May; 8(1):8506. PubMed ID: 29855554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response.
    Singh A; Crossman DK; Mai D; Guidry L; Voskuil MI; Renfrow MB; Steyn AJ
    PLoS Pathog; 2009 Aug; 5(8):e1000545. PubMed ID: 19680450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling.
    Jain M; Petzold CJ; Schelle MW; Leavell MD; Mougous JD; Bertozzi CR; Leary JA; Cox JS
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5133-8. PubMed ID: 17360366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative aspects of propionate metabolism.
    Halarnkar PP; Blomquist GJ
    Comp Biochem Physiol B; 1989; 92(2):227-31. PubMed ID: 2647392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of propionate in cholesterol biosynthesis by rat liver.
    Davis RA
    Steroids; 1978 Apr; 31(4):593-600. PubMed ID: 663988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis.
    Pronk JT; van der Linden-Beuman A; Verduyn C; Scheffers WA; van Dijken JP
    Microbiology (Reading); 1994 Apr; 140 ( Pt 4)():717-22. PubMed ID: 7912143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis.
    Sirakova TD; Dubey VS; Kim HJ; Cynamon MH; Kolattukudy PE
    Infect Immun; 2003 Jul; 71(7):3794-801. PubMed ID: 12819062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolism of the Last Two Steroid Rings in
    Crowe AM; Casabon I; Brown KL; Liu J; Lian J; Rogalski JC; Hurst TE; Snieckus V; Foster LJ; Eltis LD
    mBio; 2017 Apr; 8(2):. PubMed ID: 28377529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one.
    Ouellet H; Guan S; Johnston JB; Chow ED; Kells PM; Burlingame AL; Cox JS; Podust LM; de Montellano PR
    Mol Microbiol; 2010 Aug; 77(3):730-42. PubMed ID: 20545858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. igr Genes and Mycobacterium tuberculosis cholesterol metabolism.
    Chang JC; Miner MD; Pandey AK; Gill WP; Harik NS; Sassetti CM; Sherman DR
    J Bacteriol; 2009 Aug; 191(16):5232-9. PubMed ID: 19542286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis.
    Borah K; Mendum TA; Hawkins ND; Ward JL; Beale MH; Larrouy-Maumus G; Bhatt A; Moulin M; Haertlein M; Strohmeier G; Pichler H; Forsyth VT; Noack S; Goulding CW; McFadden J; Beste DJV
    Mol Syst Biol; 2021 May; 17(5):e10280. PubMed ID: 33943004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes.
    Demigné C; Morand C; Levrat MA; Besson C; Moundras C; Rémésy C
    Br J Nutr; 1995 Aug; 74(2):209-19. PubMed ID: 7547838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between colonic acetate and propionate in humans.
    Wolever TM; Spadafora P; Eshuis H
    Am J Clin Nutr; 1991 Mar; 53(3):681-7. PubMed ID: 2000822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDIM and SL1 accumulation in Mycobacterium tuberculosis is associated with mce4A expression.
    Singh P; Sinha R; Tyagi G; Sharma NK; Saini NK; Chandolia A; Prasad AK; Varma-Basil M; Bose M
    Gene; 2018 Feb; 642():178-187. PubMed ID: 28988960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.