These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19364131)

  • 1. Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants.
    Hatori Y; Lewis D; Toyoshima C; Inesi G
    Biochemistry; 2009 Jun; 48(22):4871-80. PubMed ID: 19364131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermediate phosphorylation reactions in the mechanism of ATP utilization by the copper ATPase (CopA) of Thermotoga maritima.
    Hatori Y; Hirata A; Toyoshima C; Lewis D; Pilankatta R; Inesi G
    J Biol Chem; 2008 Aug; 283(33):22541-9. PubMed ID: 18562314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase.
    Hatori Y; Majima E; Tsuda T; Toyoshima C
    J Biol Chem; 2007 Aug; 282(35):25213-21. PubMed ID: 17616523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High yield heterologous expression of wild-type and mutant Cu+-ATPase (ATP7B, Wilson disease protein) for functional characterization of catalytic activity and serine residues undergoing copper-dependent phosphorylation.
    Pilankatta R; Lewis D; Adams CM; Inesi G
    J Biol Chem; 2009 Aug; 284(32):21307-16. PubMed ID: 19520855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase.
    Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC
    J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the invariant His-1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B.
    Tsivkovskii R; Efremov RG; Lutsenko S
    J Biol Chem; 2003 Apr; 278(15):13302-8. PubMed ID: 12551905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of P-type copper ATPases.
    Inesi G; Pilankatta R; Tadini-Buoninsegni F
    Biochem J; 2014 Oct; 463(2):167-76. PubMed ID: 25242165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system.
    Hsi G; Cullen LM; Macintyre G; Chen MM; Glerum DM; Cox DW
    Hum Mutat; 2008 Apr; 29(4):491-501. PubMed ID: 18203200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus.
    Mandal AK; Cheung WD; Argüello JM
    J Biol Chem; 2002 Mar; 277(9):7201-8. PubMed ID: 11756450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F.
    Morgan CT; Tsivkovskii R; Kosinsky YA; Efremov RG; Lutsenko S
    J Biol Chem; 2004 Aug; 279(35):36363-71. PubMed ID: 15205462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases.
    Mandal AK; Yang Y; Kertesz TM; Argüello JM
    J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase.
    Fan B; Rosen BP
    J Biol Chem; 2002 Dec; 277(49):46987-92. PubMed ID: 12351646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B).
    Cater MA; La Fontaine S; Mercer JF
    Biochem J; 2007 Jan; 401(1):143-53. PubMed ID: 16939419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional insights of Wilson disease copper-transporting ATPase.
    Fatemi N; Sarkar B
    J Bioenerg Biomembr; 2002 Oct; 34(5):339-49. PubMed ID: 12539961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural model of the copper ATPase ATP7B to facilitate analysis of Wilson disease-causing mutations and studies of the transport mechanism.
    Schushan M; Bhattacharjee A; Ben-Tal N; Lutsenko S
    Metallomics; 2012 Jul; 4(7):669-78. PubMed ID: 22692182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding.
    González-Guerrero M; Hong D; Argüello JM
    J Biol Chem; 2009 Jul; 284(31):20804-11. PubMed ID: 19525226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.