These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19364142)

  • 1. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip.
    Dishinger JF; Reid KR; Kennedy RT
    Anal Chem; 2009 Apr; 81(8):3119-27. PubMed ID: 19364142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells.
    Dishinger JF; Kennedy RT
    Anal Chem; 2007 Feb; 79(3):947-54. PubMed ID: 17263320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay.
    Roper MG; Shackman JG; Dahlgren GM; Kennedy RT
    Anal Chem; 2003 Sep; 75(18):4711-7. PubMed ID: 14674445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfusion and chemical monitoring of living cells on a microfluidic chip.
    Shackman JG; Dahlgren GM; Peters JL; Kennedy RT
    Lab Chip; 2005 Jan; 5(1):56-63. PubMed ID: 15616741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line competitive immunoassay based on capillary electrophoresis applied to monitoring insulin secretion from single islets of Langerhans.
    Tao L; Aspinwall CA; Kennedy RT
    Electrophoresis; 1998 Mar; 19(3):403-8. PubMed ID: 9551792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary electrophoresis-based immunoassay to determine insulin content and insulin secretion from single islets of Langerhans.
    Schultz NM; Huang L; Kennedy RT
    Anal Chem; 1995 Mar; 67(5):924-9. PubMed ID: 7762828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device.
    Lomasney AR; Yi L; Roper MG
    Anal Chem; 2013 Aug; 85(16):7919-25. PubMed ID: 23848226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans.
    Yi L; Wang X; Dhumpa R; Schrell AM; Mukhitov N; Roper MG
    Lab Chip; 2015 Feb; 15(3):823-32. PubMed ID: 25474044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous capillary electrophoresis competitive immunoassay for insulin, glucagon, and islet amyloid polypeptide secretion from mouse islets of Langerhans.
    Guillo C; Truong TM; Roper MG
    J Chromatogr A; 2011 Jul; 1218(26):4059-64. PubMed ID: 21620410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing.
    Glieberman AL; Pope BD; Zimmerman JF; Liu Q; Ferrier JP; Kenty JHR; Schrell AM; Mukhitov N; Shores KL; Tepole AB; Melton DA; Roper MG; Parker KK
    Lab Chip; 2019 Sep; 19(18):2993-3010. PubMed ID: 31464325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing insulin measurement throughput by fluorescence anisotropy imaging immunoassays.
    Wang Y; Adeoye DI; Wang YJ; Roper MG
    Anal Chim Acta; 2022 Jun; 1212():339942. PubMed ID: 35623790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling Glucose-Stimulated and M3 Receptor-Activated Insulin Secretion Dynamics from Islets of Langerhans Using an Extended-Lifetime Fluorescence Dye.
    Adablah JE; Wang Y; Donohue M; Roper MG
    Anal Chem; 2020 Jun; 92(12):8464-8471. PubMed ID: 32429660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-enabled quantitative measurements of insulin release dynamics from single islets of Langerhans in response to 5-palmitic acid hydroxy stearic acid.
    Bandak B; Yi L; Roper MG
    Lab Chip; 2018 Sep; 18(18):2873-2882. PubMed ID: 30109329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic monitoring of glucagon secretion from living cells on a microfluidic chip.
    Shackman JG; Reid KR; Dugan CE; Kennedy RT
    Anal Bioanal Chem; 2012 Mar; 402(9):2797-803. PubMed ID: 22286080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions.
    Lu S; Dugan CE; Kennedy RT
    Anal Chem; 2018 Apr; 90(8):5171-5178. PubMed ID: 29578696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Platform for Studying Human Insulin Release Dynamics of Single Pancreatic Islet Microtissues at High Resolution.
    Misun PM; Yesildag B; Forschler F; Neelakandhan A; Rousset N; Biernath A; Hierlemann A; Frey O
    Adv Biosyst; 2020 Mar; 4(3):e1900291. PubMed ID: 32293140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin from individual isolated islets of Langerhans 2. Effect of glucose in varying concentrations.
    Beigelman PM; Thomas LJ; Shu MJ; Bessman SP
    J Physiol (Paris); 1976 Nov; 72(6):721-8. PubMed ID: 792420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretion from islets and single islet cells following cryopreservation.
    Lakey JR; Aspinwall CA; Cavanagh TJ; Kennedy RT
    Cell Transplant; 1999; 8(6):691-8. PubMed ID: 10701497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-parametric islet perifusion system within a microfluidic perifusion device.
    Adewola AF; Wang Y; Harvat T; Eddington DT; Lee D; Oberholzer J
    J Vis Exp; 2010 Jan; (35):. PubMed ID: 20104201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic device integrating a network of hyper-elastic valves for automated glucose stimulation and insulin secretion collection from a single pancreatic islet.
    Quintard C; Tubbs E; Achard JL; Navarro F; Gidrol X; Fouillet Y
    Biosens Bioelectron; 2022 Apr; 202():113967. PubMed ID: 35065480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.