These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 19365074)
1. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Zhou K; Kuo WH; Fillingham J; Greenblatt JF Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Liu Y; Warfield L; Zhang C; Luo J; Allen J; Lang WH; Ranish J; Shokat KM; Hahn S Mol Cell Biol; 2009 Sep; 29(17):4852-63. PubMed ID: 19581288 [TBL] [Abstract][Full Text] [Related]
3. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Crickard JB; Fu J; Reese JC J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063 [TBL] [Abstract][Full Text] [Related]
4. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. Ding B; LeJeune D; Li S J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611 [TBL] [Abstract][Full Text] [Related]
5. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. Pei Y; Schwer B; Shuman S J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973 [TBL] [Abstract][Full Text] [Related]
6. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. García A; Collin A; Calvo O Mol Biol Cell; 2012 Nov; 23(21):4297-312. PubMed ID: 22973055 [TBL] [Abstract][Full Text] [Related]
7. The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I. Mayer A; Schreieck A; Lidschreiber M; Leike K; Martin DE; Cramer P Mol Cell Biol; 2012 Apr; 32(7):1321-31. PubMed ID: 22290438 [TBL] [Abstract][Full Text] [Related]
9. Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Quan TK; Hartzog GA Genetics; 2010 Feb; 184(2):321-34. PubMed ID: 19948887 [TBL] [Abstract][Full Text] [Related]
11. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. Qiu H; Hu C; Gaur NA; Hinnebusch AG EMBO J; 2012 Aug; 31(16):3494-505. PubMed ID: 22796944 [TBL] [Abstract][Full Text] [Related]
12. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. Stevens JR; O'Donnell AF; Perry TE; Benjamin JJ; Barnes CA; Johnston GC; Singer RA PLoS One; 2011; 6(10):e25644. PubMed ID: 22022426 [TBL] [Abstract][Full Text] [Related]
13. Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Ivanov D; Kwak YT; Guo J; Gaynor RB Mol Cell Biol; 2000 May; 20(9):2970-83. PubMed ID: 10757782 [TBL] [Abstract][Full Text] [Related]
14. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mayekar MK; Gardner RG; Arndt KM Mol Cell Biol; 2013 Aug; 33(16):3259-73. PubMed ID: 23775116 [TBL] [Abstract][Full Text] [Related]
15. Spt5 Phosphorylation and the Rtf1 Plus3 Domain Promote Rtf1 Function through Distinct Mechanisms. Chen JJ; Mbogning J; Hancock MA; Majdpour D; Madhok M; Nassour H; Dallagnol JC; Pagé V; Chatenet D; Tanny JC Mol Cell Biol; 2020 Jul; 40(15):. PubMed ID: 32366382 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. Pei Y; Shuman S J Biol Chem; 2003 Oct; 278(44):43346-56. PubMed ID: 12904290 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. Schwer B; Schneider S; Pei Y; Aronova A; Shuman S RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865 [TBL] [Abstract][Full Text] [Related]
18. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Dronamraju R; Strahl BD Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256 [TBL] [Abstract][Full Text] [Related]
19. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Schneider S; Pei Y; Shuman S; Schwer B Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361 [TBL] [Abstract][Full Text] [Related]
20. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]