These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19365444)

  • 1. Multiplexed force measurements on live cells with holographic optical tweezers.
    Mejean CO; Schaefer AW; Millman EA; Forscher P; Dufresne ER
    Opt Express; 2009 Apr; 17(8):6209-17. PubMed ID: 19365444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled induction, enhancement, and guidance of neuronal growth cones by use of line optical tweezers.
    Mohanty SK; Sharma M; Panicker MM; Gupta PK
    Opt Lett; 2005 Oct; 30(19):2596-8. PubMed ID: 16208911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance.
    Lee AC; Suter DM
    Dev Neurobiol; 2008 Oct; 68(12):1363-77. PubMed ID: 18698606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full phase and amplitude control of holographic optical tweezers with high efficiency.
    Jesacher A; Maurer C; Schwaighofer A; Bernet S; Ritsch-Marte M
    Opt Express; 2008 Mar; 16(7):4479-86. PubMed ID: 18542545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change.
    Persson M; Engström D; Frank A; Backsten J; Bengtsson J; Goksör M
    Opt Express; 2010 May; 18(11):11250-63. PubMed ID: 20588985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy.
    Trivedi RP; Lee T; Bertness KA; Smalyukh II
    Opt Express; 2010 Dec; 18(26):27658-69. PubMed ID: 21197040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation.
    Varney MC; Jenness NJ; Smalyukh II
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022505. PubMed ID: 25353487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing trap stiffness with position clamping in holographic optical tweezers.
    Preece D; Bowman R; Linnenberger A; Gibson G; Serati S; Padgett M
    Opt Express; 2009 Dec; 17(25):22718-25. PubMed ID: 20052197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal biophotonic workstation for live cell analysis.
    Esseling M; Kemper B; Antkowiak M; Stevenson DJ; Chaudet L; Neil MA; French PW; von Bally G; Dholakia K; Denz C
    J Biophotonics; 2012 Jan; 5(1):9-13. PubMed ID: 21842486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate Deformation Predicts Neuronal Growth Cone Advance.
    Athamneh AI; Cartagena-Rivera AX; Raman A; Suter DM
    Biophys J; 2015 Oct; 109(7):1358-71. PubMed ID: 26445437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortactin colocalizes with filopodial actin and accumulates at IgCAM adhesion sites in Aplysia growth cones.
    Decourt B; Munnamalai V; Lee AC; Sanchez L; Suter DM
    J Neurosci Res; 2009 Apr; 87(5):1057-68. PubMed ID: 19021290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of mammalian cells using a single-fiber optical microbeam.
    Mohanty SK; Mohanty KS; Berns MW
    J Biomed Opt; 2008; 13(5):054049. PubMed ID: 19021429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal cell cultures from aplysia for high-resolution imaging of growth cones.
    Lee AC; Decourt B; Suter D
    J Vis Exp; 2008 Feb; (12):. PubMed ID: 19066568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Touching the microworld with force-feedback optical tweezers.
    Pacoret C; Bowman R; Gibson G; Haliyo S; Carberry D; Bergander A; Régnier S; Padgett M
    Opt Express; 2009 Jun; 17(12):10259-64. PubMed ID: 19506679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles.
    Spesyvtsev R; Rendall HA; Dholakia K
    Opt Lett; 2015 Nov; 40(21):4847-50. PubMed ID: 26512465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical mirror trap with a large field of view.
    Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.