These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1936559)

  • 1. Cortical morphogenesis in Paramecium: a transcellular wave of protein phosphorylation involved in ciliary rootlet disassembly.
    Sperling L; Keryer G; Ruiz F; Beisson J
    Dev Biol; 1991 Nov; 148(1):205-18. PubMed ID: 1936559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein phosphorylation and dynamics of cytoskeletal structures associated with basal bodies in Paramecium.
    Keryer G; Davis FM; Rao PN; Beisson J
    Cell Motil Cytoskeleton; 1987; 8(1):44-54. PubMed ID: 3308125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos.
    Yang J; Li T
    Exp Cell Res; 2005 Oct; 309(2):379-89. PubMed ID: 16018997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SF-Assemblin genes in
    Nabi A; Yano J; Valentine MS; Picariello T; Van Houten JL
    Cilia; 2019; 8():2. PubMed ID: 31673332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.
    Ann KS; Nelson DL
    Cell Motil Cytoskeleton; 1995; 30(4):252-60. PubMed ID: 7796456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear and cortical regulation in doublets of Paramecium: II. When and how do two cortical domains reorganize to one?
    Iftode F; Prajer M; Frankel J
    J Eukaryot Microbiol; 2001; 48(6):690-712. PubMed ID: 11831779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bug22p, a conserved centrosomal/ciliary protein also present in higher plants, is required for an effective ciliary stroke in Paramecium.
    Laligné C; Klotz C; de Loubresse NG; Lemullois M; Hori M; Laurent FX; Papon JF; Louis B; Cohen J; Koll F
    Eukaryot Cell; 2010 Apr; 9(4):645-55. PubMed ID: 20118210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine oral filaments in Paramecium: a biochemical and immunological analysis.
    Clerot J; Iftode F; Budin K; Jeanmaire-Wolf R; Coffe G; Fleury-Aubusson A
    J Eukaryot Microbiol; 2001; 48(2):234-45. PubMed ID: 12095113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission.
    Iftode F; Fleury-Aubusson A
    Biol Cell; 2003; 95(1):39-51. PubMed ID: 12753952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of surface pattern during division in Paramecium. II. Defective spatial control in the mutant kin241.
    Jerka-Dziadosz M; Garreau de Loubresse N; Beisson J
    Development; 1992 May; 115(1):319-35. PubMed ID: 1638989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of ciliary orientation through cAMP-dependent phosphorylation of axonemal proteins in paramecium caudatum.
    Noguchi M; Ogawa T; Taneyama T
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):263-71. PubMed ID: 10744859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for Paramecium tetraurelia ciliary membrane protein identification and function.
    Valentine M; Yano J; Lodh S; Nabi A; Deng B; Van Houten J
    Methods Cell Biol; 2023; 175():177-219. PubMed ID: 36967141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fine structure of cortical components of Paramecium multimicronucleatum.
    SEDAR AW; PORTER KR
    J Biophys Biochem Cytol; 1955 Nov; 1(6):583-604. PubMed ID: 13278368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented ciliary reorientation response and cAMP-dependent protein phosphorylation induced by glycerol in triton-extracted Paramecium.
    Noguchi M; Kitani T; Ogawa T; Inoue H; Kamachi H
    Zoolog Sci; 2005 Jan; 22(1):41-8. PubMed ID: 15684582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epiplasmins and epiplasm in paramecium: the building of a submembraneous cytoskeleton.
    Aubusson-Fleury A; Bricheux G; Damaj R; Lemullois M; Coffe G; Donnadieu F; Koll F; Viguès B; Bouchard P
    Protist; 2013 Jul; 164(4):451-69. PubMed ID: 23837920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarity in Ciliate Models: From Cilia to Cell Architecture.
    Soares H; Carmona B; Nolasco S; Viseu Melo L
    Front Cell Dev Biol; 2019; 7():240. PubMed ID: 31681771
    [No Abstract]   [Full Text] [Related]  

  • 17. Reduction of meckelin leads to general loss of cilia, ciliary microtubule misalignment and distorted cell surface organization.
    Picariello T; Valentine MS; Yano J; Van Houten J
    Cilia; 2014 Jan; 3(1):2. PubMed ID: 24484742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of basal body duplication and cell division in crochu, a mutant of Paramecium hypersensitive to nocodazole.
    Jerka-Dziadosz M; Ruiz F; Beisson J
    Development; 1998 Apr; 125(7):1305-14. PubMed ID: 9477329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubulin polyglycylation: a morphogenetic marker in ciliates.
    Iftode F; Clérot JC; Levilliers N; Bré MH
    Biol Cell; 2000 Dec; 92(8-9):615-28. PubMed ID: 11374440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.
    Kutomi O; Seki M; Nakamura S; Kamachi H; Noguchi M
    Protoplasma; 2013 Oct; 250(5):1219-27. PubMed ID: 23636433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.