BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19365746)

  • 1. Opposite-base dependent excision of 5-formyluracil from DNA by hSMUG1.
    Knaevelsrud I; Slupphaug G; Leiros I; Matsuda A; Ruoff P; Bjelland S
    Int J Radiat Biol; 2009 May; 85(5):413-20. PubMed ID: 19365746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.
    Masaoka A; Matsubara M; Hasegawa R; Tanaka T; Kurisu S; Terato H; Ohyama Y; Karino N; Matsuda A; Ide H
    Biochemistry; 2003 May; 42(17):5003-12. PubMed ID: 12718543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ohmae E; Izumi S; Katayanagi K; Ide H
    Nucleic Acids Res; 2004; 32(17):5291-302. PubMed ID: 15466595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian 5-formyluracil-DNA glycosylase. 1. Identification and characterization of a novel activity that releases 5-formyluracil from DNA.
    Matsubara M; Masaoka A; Tanaka T; Miyano T; Kato N; Terato H; Ohyama Y; Iwai S; Ide H
    Biochemistry; 2003 May; 42(17):4993-5002. PubMed ID: 12718542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide excision repair of 5-formyluracil in vitro is enhanced by the presence of mismatched bases.
    Kino K; Shimizu Y; Sugasawa K; Sugiyama H; Hanaoka F
    Biochemistry; 2004 Mar; 43(10):2682-7. PubMed ID: 15005603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excision of uracil from DNA by hSMUG1 includes strand incision and processing.
    Alexeeva M; Moen MN; Grøsvik K; Tesfahun AN; Xu XM; Muruzábal-Lecumberri I; Olsen KM; Rasmussen A; Ruoff P; Kirpekar F; Klungland A; Bjelland S
    Nucleic Acids Res; 2019 Jan; 47(2):779-793. PubMed ID: 30496516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action mechanism of human SMUG1 uracil-DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ide H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):295-6. PubMed ID: 17150750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase.
    Darwanto A; Theruvathu JA; Sowers JL; Rogstad DK; Pascal T; Goddard W; Sowers LC
    J Biol Chem; 2009 Jun; 284(23):15835-46. PubMed ID: 19324873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil.
    Doseth B; Ekre C; Slupphaug G; Krokan HE; Kavli B
    DNA Repair (Amst); 2012 Jun; 11(6):587-93. PubMed ID: 22483865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rate of base excision repair of uracil is controlled by the initiating glycosylase.
    Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE
    DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity.
    An Q; Robins P; Lindahl T; Barnes DE
    Cancer Res; 2007 Feb; 67(3):940-5. PubMed ID: 17283124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1.
    Kuznetsova AA; Iakovlev DA; Misovets IV; Ishchenko AA; Saparbaev MK; Kuznetsov NA; Fedorova OS
    Mol Biosyst; 2017 Nov; 13(12):2638-2649. PubMed ID: 29051947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosomes and the three glycosylases: High, medium, and low levels of excision by the uracil DNA glycosylase superfamily.
    Tarantino ME; Dow BJ; Drohat AC; Delaney S
    DNA Repair (Amst); 2018 Dec; 72():56-63. PubMed ID: 30268365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Active-Site Residues Phe98, His239, and Arg243 in DNA Binding and in the Catalysis of Human Uracil-DNA Glycosylase SMUG1.
    Iakovlev DA; Alekseeva IV; Vorobjev YN; Kuznetsov NA; Fedorova OS
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable, specific, and reversible base pairing via Schiff base.
    Dohno C; Okamoto A; Saito I
    J Am Chem Soc; 2005 Nov; 127(47):16681-4. PubMed ID: 16305258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG.
    Mi R; Dong L; Kaulgud T; Hackett KW; Dominy BN; Cao W
    J Mol Biol; 2009 Jan; 385(3):761-78. PubMed ID: 18835277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis of 8-oxoguanine adjacent to an abasic site in simian kidney cells: tandem mutations and enhancement of G-->T transversions.
    Kalam MA; Basu AK
    Chem Res Toxicol; 2005 Aug; 18(8):1187-92. PubMed ID: 16097791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of thymine to 5-formyluracil in DNA promotes misincorporation of dGMP and subsequent elongation of a mismatched primer terminus by DNA polymerase.
    Masaoka A; Terato H; Kobayashi M; Ohyama Y; Ide H
    J Biol Chem; 2001 May; 276(19):16501-10. PubMed ID: 11278425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural role of uracil DNA glycosylase for the recognition of uracil in DNA duplexes. Clues from atomistic simulations.
    Franco D; Sgrignani J; Bussi G; Magistrato A
    J Chem Inf Model; 2013 Jun; 53(6):1371-87. PubMed ID: 23705837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease.
    Shatilla A; Ramotar D
    Biochem J; 2002 Jul; 365(Pt 2):547-53. PubMed ID: 11966472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.